Закон Ома для участка цепи. Сопротивление. Закон Ома для участка цепи – полное руководство для начинающих

Соберём электрическую цепь, состоящую из источника тока (который позволяет плавно менять напряжение), амперметра, спирали из никелиновой проволоки (проводника), ключа и параллельно присоединённого к спирали вольтметра (схема этой цепи показана рядом, прямоугольником условно обозначен проводник).

Замкнём цепь и отметим показания приборов. Затем при помощи источника тока плавно изменим напряжение (лучше всего увеличить его вдвое). Напряжение на спирали при этом тоже увеличится вдвое, и амперметр покажет вдвое большую силу тока. Увеличивая напряжение в \(3\) раза, напряжение на спирали увеличивается втрое, во столько же раз увеличивается сила тока.
Таким образом, опыт показывает, что во сколько раз увеличивается напряжение, приложенное к одному и тому же проводнику, во столько же раз увеличивается сила тока в нём. Другими словами:

Обрати внимание!

Сила тока в проводнике прямо пропорциональна напряжению на концах проводника.

Эту зависимость можно изобразить графически. Её называют зависимостью силы тока в проводнике от напряжения между концами этого проводника.

Включая в электрическую цепь источника тока различные проводники и амперметр, можно заметить, что при разных проводниках показания амперметра различны, т.е. сила тока в данной цепи различна.

Графики тоже будут отличаться.

Вольтметр, поочерёдно подключаемый к концам этих проводников, показывает одинаковое напряжение. Значит, сила тока в цепи зависит не только от напряжения, но и от свойств проводников, включённых в цепь. Зависимость силы тока от свойств проводника объясняется тем, что разные проводники обладают различным электрическим сопротивлением.

Обрати внимание!

Электрическое сопротивление - физическая величина. Обозначается оно буквой R.

За единицу сопротивления принимают \(1\) ом - сопротивление такого проводника, в котором при напряжении на концах \(1\)вольт сила тока равна \(1\) амперу .

Кратко это записывают так: 1 Ом = 1 В 1 А.

Применяют и другие единицы сопротивления: миллиом (мОм), килоом (кОм), мегаом (МОм).

\(1\) мОм = \(0,001\) Ом;

\(1\) кОм = \(1000\) Ом;

\(1\) МОм = \(1 000 000\) Ом.

Причина сопротивления заключается в следующем: электроны взаимодействуют с ионами кристаллической решётки металла. При этом замедляется упорядоченное движение электронов, и сквозь поперечное сечение проводника проходит за \(1\) с меньшее их число. Соответственно, уменьшается и переносимый электронами за \(1\) с заряд, т.е. уменьшается сила тока. Таким образом, каждый проводник как бы противодействует электрическому току, оказывает ему сопротивление. Итак:

Обрати внимание!

Причиной сопротивления является взаимодействие движущихся электронов с ионами кристаллической решётки.

Чтобы ответить на вопрос, как зависит сила тока в цепи от сопротивления, обратимся к опыту.

На рисунке изображена электрическая цепь, источником тока в которой является аккумулятор. В эту цепь по очереди включают проводники, обладающие различным сопротивлением. Напряжение на концах проводника во время опыта поддерживается постоянным. За этим следят по показаниям вольтметра. Силу тока в цепи измеряют амперметром. Ниже приведены результаты опытов с тремя различными проводниками.

Обобщая результаты опытов, приходим к выводу, что:

Обрати внимание!

Сила тока в проводнике обратно пропорциональна сопротивлению проводника.

Зависимость силы тока от напряжения на концах участка цепи и сопротивления этого участка называется законом Ома - по имени немецкого учёного Георга Ома, открывшего этот закон в \(1827\) году.
Закон Ома читается так:

Сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.

И записывается так:

где \(I\) - сила тока в участке цепи, \(U\) - напряжение на этом участке, \(R\) - сопротивление участка.

Зависимость силы тока от сопротивления проводника при одном и том же напряжении на его концах может быть показана графически:

Найти сопротивление экспериментально можно несколькими способами:

При помощи амперметра и вольтметра

При помощи омметра

Добавить сайт в закладки

Закон Ома

На рисунке показана схема знакомой вам простейшей электрической цепи. Эта замкнутая цепь состоит из трех элементов:

  • источника напряжения – батареи GB;
  • потребителя тока – нагрузки R, которой может быть, например, нить накала электрической лампы или резистор;
  • проводников, соединяющих источник напряжения с нагрузкой.

Между прочим, если эту цепь дополнить выключателем, получится полная схема карманного электрического фонаря. Нагрузка R, обладающая определенным сопротивлением, является участком цепи.

Значение тока на этом участке цепи зависит от действующего на нем напряжения и его сопротивления: чем больше напряжение и меньше сопротивление, тем большим ток будет идти по участку цепи.

Эта зависимость тока от напряжения и сопротивления выражается следующей формулой:

  • I – ток, выраженный в амперах, А;
  • U – напряжение в вольтах, В;
  • R – сопротивление в омах, Ом.

Читается это математическое выражение так: ток на участке цепи прямо пропорционален напряжению на нем и обратно пропорционален его сопротивлению. Это основной закон электротехники, именуемый законом Ома (по фамилии Г. Ома) для участка электрической цепи. Используя закон Ома, можно по двум известным электрическим величинам узнать неизвестную третью. Вот несколько примеров практического применения закона Ома:

  1. Первый пример. На участке цепи, обладающем сопротивлением 5 Ом, действует напряжение 25 В. Надо узнать значение тока на этом участке цепи. Решение: I = U/R = 25 / 5 = 5 А.
  2. Второй пример. На участке цепи действует напряжение 12 В, создавая в нем ток, равный 20 мА. Каково сопротивление этого участка цепи? Прежде всего ток 20 мА нужно выразить в амперах. Это будет 0,02 А. Тогда R = 12 / 0,02 = 600 Ом.
  3. Третий пример. Через участок цепи сопротивлением 10 кОм течет ток 20 мА. Каково напряжение, действующее на этом участке цепи? Здесь, как и в предыдущем примере, ток должен быть выражен в амперах (20 мА = 0,02 А), сопротивление в омах (10 кОм = 10000 Ом). Следовательно, U = IR = 0,02×10000 = 200 В.

На цоколе лампы накаливания плоского карманного фонаря выштамповано: 0,28 А и 3,5 В. О чем говорят эти сведения? О том, что лампочка будет нормально светиться при токе 0,28 А, который обусловливается напряжением 3,5 В. Пользуясь законом Ома, нетрудно подсчитать, что накаленная нить лампочки имеет сопротивление R = 3,5 / 0,28 = 12,5 Ом.

Это сопротивление именно накаленной нити лампочки, сопротивление остывшей нити значительно меньше. Закон Ома справедлив не только для участка, но и для всей электрической цепи. В этом случае в значение R подставляется суммарное сопротивление всех элементов цепи, в том числе и внутреннее сопротивление источника тока. Однако при простейших расчетах цепей обычно пренебрегают сопротивлением соединительных проводников и внутренним сопротивлением источника тока.

В связи с этим нужно привести еще один пример: напряжение электроосветительной сети 220 В. Какой ток потечет в цепи, если сопротивление нагрузки равно 1000 Ом? Решение: I = U/R = 220 / 1000 = 0,22 А. Примерно такой ток потребляет электрический паяльник.

Всеми этими формулами, вытекающими из закона Ома, можно пользоваться и для расчета цепей переменного тока, но при условии, если в цепях нет катушек индуктивности и конденсаторов.

Закон Ома и производные от него расчетные формулы достаточно легко запомнить, если пользоваться вот этой графической схемой, это так называемый треугольник закона Ома.

Пользоваться этим треугольником легко, достаточно четко запомнить, что горизонтальная линия в нем означает знак деления (по аналогии дробной черты), а вертикальная линия означает знак умножения.

Теперь следует рассмотреть такой вопрос: как влияет на ток резистор, включаемый в цепь последовательно с нагрузкой или параллельно ей? Лучше разобрать это на примере. Имеется лампочка от круглого электрического, фонаря, рассчитанная на напряжение 2,5 В и ток 0,075 А. Можно ли питать эту лампочку от батареи 3336Л, начальное напряжение которой 4,5 В?

Нетрудно подсчитать, что накаленная нить этой лампочки имеет сопротивление немногим больше 30 Ом. Если же питать ее от свежей батареи 3336Л, то через нить накала лампочки, по закону Ома, пойдет ток, почти вдвое превышающий тот ток, на который она рассчитана. Такой перегрузки нить не выдержит, она перекалится и разрушится. Но эту лампочку все же можно питать от батареи 336Л, если последовательно в цепь включить добавочный резистор сопротивлением 25 Ом.

В этом случае общее сопротивление внешней цепи будет равно примерно 55 Ом, то есть 30 Ом – сопротивление нити лампочки Н плюс 25 Ом – сопротивление добавочного резистора R. В цепи, следовательно, потечет ток, равный примерно 0,08 А, то есть почти такой же, на который рассчитана нить накала лампочки.

Эту лампочку можно питать от батареи и с более высоким напряжением и даже от электроосветительной сети, если подобрать резистор соответствующего сопротивления. В этом примере добавочный резистор ограничивает ток в цепи до нужного нам значения. Чем больше будет его сопротивление, тем меньше будет и ток в цепи. В данном случае в цепь было включено последовательно два сопротивления: сопротивление нити лампочки и сопротивление резистора. А при последовательном соединении сопротивлений ток одинаков во всех точках цепи.

Можно включать амперметр в любую точку, и всюду он будет показывать одно значение. Это явление можно сравнить с потоком воды в реке. Русло реки на различных участках может быть широким или узким, глубоким или мелким. Однако за определенный промежуток времени через поперечное сечение любого участка русла реки всегда проходит одинаковое количество воды.

Добавочный резистор, включаемый в цепь последовательно с нагрузкой, можно рассматривать как резистор, «гасящий» часть напряжения, действующего в цепи. Напряжение, которое гасится добавочным резистором или, как говорят, падает на нем, будет тем большим, чем больше сопротивление этого резистора. Зная ток и сопротивление добавочного резистора, падение напряжения на нем легко подсчитать все по той же знакомой вам формуле U = IR, здесь:

  • U – падение напряжения, В;
  • I – ток в цепи, A;
  • R – сопротивление добавочного резистора, Ом.

Применительно к примеру резистор R (см. рис.) погасил избыток напряжения: U = IR = 0,08×25 = 2 В. Остальное напряжение батареи, равное приблизительно 2,5 В, упало на нити лампочки. Необходимое сопротивление резистора можно найти по другой знакомой вам формуле R = U/I, где:

  • R – искомое сопротивление добавочного резистора, Ом;
  • U – напряжение, которое необходимо погасить, В;
  • I – ток в цепи, А.

Для рассматриваемого примера сопротивление добавочного резистора равно: R = U/I = 2/0,075, 27 Ом. Изменяя сопротивление, можно уменьшать или увеличивать напряжение, которое падает на добавочном резисторе, таким образом регулируя ток в цепи. Но добавочный резистор R в такой цепи может быть переменным, то есть резистором, сопротивление которого можно изменять (см. рис. ниже).

В этом случае с помощью движка резистора можно плавно изменять напряжение, подводимое к нагрузке Н, а значит, плавно регулировать ток, протекающий через эту нагрузку. Включенный таким образом переменный резистор называют реостатом. С помощью реостатов регулируют токи в цепях приемников, телевизоров и усилителей. Во многих кинотеатрах реостаты использовали для плавного гашения света в зрительном зале. Есть и другой способ подключения нагрузки к источнику тока с избыточным напряжением – тоже с помощью переменного резистора, но включенного потенциометром, то есть делителем напряжения, как показано на рисунке ниже.

Здесь R1 – резистор, включенный потенциометром, a R2 – нагрузка, которой может быть та же лампочка накаливания или какой-то другой прибор. На резисторе R1 происходит падение напряжения источника тока, которое частично или полностью может быть подано к нагрузке R2. Когда движок резистора находится в крайнем нижнем положении, к нагрузке напряжение вообще не подается (если это лампочка, она гореть не будет).

По мере перемещения движка резистора вверх мы будем подавать все большее напряжение к нагрузке R2 (если это лампочка, ее нить будет накаливаться). Когда же движок резистора R1 окажется в крайнем верхнем положении, к нагрузке R2 будет подано все напряжение источника тока (если R2 – лампочка карманного фонаря, а напряжение источника тока большое, нить лампочки перегорит). Можно опытным путем найти такое положение движка переменного резистора, при котором к нагрузке будет подано необходимое ей напряжение.

Переменные резисторы, включаемые потенциометрами, широко используют для регулирования громкости в приемниках и усилителях. Резистор может быть непосредственно подключен параллельно нагрузке. В таком случае ток на этом участке цепи разветвляется и идет двумя параллельными путями: через добавочный резистор и основную нагрузку. Наибольший ток будет в ветви с наименьшим сопротивлением.

Сумма же токов обеих ветвей будет равна току, расходуемому на питание внешней цепи. К параллельному соединению прибегают в тех cлучаях, когда надо ограничить ток не во всей цепи, как при последовательном включении добавочного резистора, а только на каком-то участке. Добавочные резисторы подключают, например, параллельно миллиамперметрам, чтобы ими можно было измерять большие токи. Такие резисторы называют шунтирующими или шунтами. Слово шунт означает ответвление.

В 1826 году немецкий ученый Георг Ом совершил открытие и описал
эмпирический закон о соотношении между собой таких показателей как сила тока, напряжение и особенности проводника в цепи. Впоследствии, по имени ученого он стал называться закон Ома.

В дальнейшем выяснилось, что эти особенности не что иное, как сопротивление проводника, возникающее в процессе его контакта с электричеством. Это внешнее сопротивление (R). Есть также внутреннее сопротивление (r), характерное для источника тока.

Закон Ома для участка цепи

Согласно обобщенному закону Ома для некоторого участка цепи, сила тока на участке цепи прямо пропорциональна напряжению на концах участка и обратно пропорциональна сопротивлению.

Где U – напряжение концов участка,I– сила тока, R– сопротивление проводника.

Беря во внимание вышеприведенную формулу, есть возможность найти неизвестные значенияUиR, сделав несложные математические операции.

Данные выше формулы справедливы лишь когда сеть испытывает на себе одно сопротивление.

Закон Ома для замкнутой цепи

Сила тока полной цепи равна ЭДС, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Замкнутая сеть имеет одновременно сопротивления внутреннего и внешнего характера. Поэтому формулы отношения будут уже другими.

Где E – электродвижущая сила (ЭДС), R- внешнее сопротивление источника, r-внутреннее сопротивление источника.

Закон Ома для неоднородного участка цепи

Замкнутая электрическая сеть содержит участки линейного и нелинейного характера. Участки, не имеющие источника тока и не зависящие от стороннего воздействия являются линейными, а участки, содержащие источник – нелинейными.

Закон Ома для участка сети однородного характера был изложен выше. Закон на нелинейном участке будет иметь следующий вид:

I = U/ R = f1 – f2 + E/ R

Где f1 – f2 – разница потенциалов на конечных точках рассматриваемого участка сети

R – общее сопротивление нелинейного участка цепи

ЭДС нелинейного участка цепи бывает больше нуля или меньше. Если направление движения тока, идущего из источника с движением тока в электрической сети, совпадают, будет преобладать движение зарядов положительного характера и ЭДС будет положительная. В случае же совпадения направлений, в сети будет увеличено движение отрицательных зарядов, создаваемых ЭДС.

Закон Ома для переменного тока

При имеющейся в сети емкости или инертности, необходимо учитывать при проводимых вычислениях, что они выдают свое сопротивление, от действия которого ток приобретает переменный характер.

Закон Ома для переменного тока выглядит так:

где Z – сопротивление по всей длине электрической сети. Его еще называют импеданс. Импеданс составляют сопротивления активного и реактивного характера.

Закон Ома не является основным научным законом, а лишь эмпирическим отношением, причем в некоторых условиях оно может не соблюдаться:

  • Когда сеть обладает высокой частотой, электромагнитное поле меняется с большой скоростью, и при расчетах необходимо учитывать инертность носителей заряда;
  • В условиях низкой температуры с веществами, которые обладают сверхпроводимостью;
  • Когда проводник сильно нагревается проходящим напряжением, отношение тока к напряжению становится переменным и может не соответствовать общему закону;
  • При нахождении под высоким напряжением проводника или диэлектрика;
  • В светодиодных лампах;
  • В полупроводниках и полупроводниковых приборах.

В свою очередь элементы и проводники, соблюдающие закон Ома, называются омическими.

Закон Ома может дать объяснение некоторым явлениям природы. Например, когда мы видим птиц, сидящих на высоковольтных проводах, у нас возникает вопрос – почему на них не действует электрический ток? Объясняется это довольно просто. Птицы, сидя на проводах, представляют собой своеобразные проводники. Большая часть напряжения приходится на промежутки между птицами, а та доля, что приходится на сами «проводники» не представляет для них опасности.

Но это правило работает лишь при единичном соприкосновении. Если птица заденет клювом или крылом провод или телеграфный столб, она неминуемо погибнет от огромного количества напряжения, которое несут в себе эти участки. Такие случаи происходят повсеместно. Поэтому в целях безопасности в некоторых населенных пунктах установлены специальные приспособления, защищающие птиц от опасного напряжения. На таких насестах птицы находятся в полной безопасности.

Закон Ома также широко применятся на практике. Электричество смертельно опасно для человека при одном лишь касании к оголенному проводу. Но в некоторых случаях сопротивление человеческого тела может быть разным.

Так, например, сухая и неповрежденная кожа обладает большим сопротивлением к воздействию электричества нежели рана или кожа, покрытая потом. В следствие переутомления, нервного напряжения и опьянения, даже при небольшом напряжении тока человек может получить сильный удар током.

В среднем, сопротивление тела человека – 700 Ом, значит, для человека является безопасным напряжение в 35 В. Работая с большим напряжением, специалисты используют .

Если увеличить в несколько раз напряжение, действующее в электрической цепи, то ток в этой цепи увеличится во столько же раз. А если увеличить в несколько раз сопротивление цепи, то ток во столько же раз уменьшится. Подобно этому водяной поток в трубе тем больше, чем сильнее давление и чем меньше сопротивление, которое оказывает труба движению воды.

Чтобы выразить закон Ома математически наиболее просто, считают, что сопротивление проводника, в котором при напряжении 1 В проходит ток 1 А, равно 1 Ом.

Ток в амперах можно всегда определить, если разделить напряжение в вольтах на сопротивление в омах. Поэтому закон Ома для участка цепи записывается следующей формулой:

Расчеты, выполняемые с помощью закона Ома для участка цепи, будут правильны в том случае, когда напряжение выражено в вольтах, сопротивление в омах и ток в амперах. Если используются кратные единицы измерений этих величин (например, миллиампер, милливольт, мегаом и т. д.), то их следует перевести соответственно в амперы, вольты и омы. Чтобы подчеркнуть это, иногда формулу закона Ома для участка цепи пишут так:

ампер = вольт/ом

Можно также рассчитывать ток в миллиамперах и микроамперах, при этом напряжение должно быть выражено в вольтах, а сопротивление - в килоомах и мегаомах соответственно.

Закон Ома справедлив для любого участка цепи. Если требуется определить ток в данном участке цепи, то необходимо напряжение, действующее на этом участке (рис. 1), разделить на сопротивление именно этого участка.

Рис 1. Применение закона Ома для участка цепи

Приведем пример расчета тока по закону Ома . Пусть требуется определить ток в лампе, имеющей сопротивление 2,5 Ом, если напряжение, приложенное к лампе, составляет 5 В. Разделив 5 В на 2,5 Ом, получим значение тока, равное 2 А. Во втором примере определим ток, который будет протекать под действием напряжения 500 В в цепи, сопротивление которой равно 0,5 МОм. Для этого выразим сопротивление в омах. Разделив 500 В на 500 000 Ом, найдем значение тока в цепи, которое равно 0,001 А или 1 мА.



Часто, зная ток и сопротивление, определяют с помощью закона Ома напряжение. Запишем формулу для определения напряжения

Из этой формулы видно, что напряжение на концах данного участка цепи прямо пропорционально току и сопротивлению . Смысл этой зависимости понять нетрудно. Если не изменять сопротивление участка цепи, то увеличить ток можно только путем увеличения напряжения. Значит при постоянном сопротивлении большему току соответствует большее напряжение. Если же надо получить один и тот же ток при различных сопротивлениях, то при большем сопротивлении должно быть соответственно большее напряжение.

Напряжение на участке цепи часто называют падением напряжения . Это нередко приводит к недоразумению. Многие думают, что падение напряжения есть какое-то потерянное ненужное напряжение. В действительности же понятия напряжение и падение напряжения равнозначны.

Расчет напряжения с помощью закона Ома можно показать на следующем примере. Пусть через участок цепи с сопротивлением 10 кОм проходит ток 5 мА и требуется определить напряжение на этом участке.

Умножив I = 0,005 А на R -10000 Ом, получим напряжение,равное 50 В. Можно было бы получить тот же результат, умножив 5 мА на 10 кОм: U = 50 В

В электронных устройствах ток обычно выражается в миллиамперах, а сопротивление - в килоомах. Поэтому удобно в расчетах по закону Ома применять именно эти единицы измерений.

По закону Ома рассчитывается также сопротивление, если известно напряжение и ток. Формула для этого случая пишется следующим образом: R = U/I.

Сопротивление всегда представляет собой отношение напряжения к току. Если напряжение увеличить или уменьшить в несколько раз, то ток увеличится или уменьшится в такое же число раз. Отношение напряжения к току, равное сопротивлению, остается неизменным.

Не следует понимать формулу для определения сопротивления в том смысле, что сопротивление данного проводника зависит оттока и напряжения. Известно, что оно зависит от длины, площади сечения и материала проводника. По внешнему виду формула для определения сопротивления напоминает формулу для расчета тока, но между ними имеется принципиальная разница. Ток в данном участке цепи действительно зависит от напряжения и сопротивления и изменяется при их изменении. А сопротивление данного участка цепи является величиной постоянной, не зависящей от изменения напряжения и тока, но равной отношению этих величин.

Когда один и тот же ток проходит в двух участках цепи, а напряжения, приложенные к ним, различны, то ясно, что участок, к которому приложено большее напряжение, имеет соответственно большее сопротивление. А если под действием одного и того же напряжения в двух разных участках цепи проходит различный ток, то меньший ток всегда будет на том участке, который имеет большее сопротивление. Все это вытекает из основной формулировки закона Ома для участка цепи, т. е. из того, что ток тем больше, чем больше напряжение и чем меньше сопротивление.

Расчет сопротивления с помощью закона Ома для участка цепи покажем на следующем примере. Пусть требуется найти сопротивление участка, через который при напряжении 40 В проходит ток 50 мА. Выразив ток в амперах, получим I = 0,05 А. Разделим 40 на 0,05 и найдем, что сопротивление составляет 800 Ом.

Закон Ома можно наглядно представить в виде так называемой вольт-амперной характеристики . Как известно, прямая пропорциональная зависимость между двумя величинами представляет собой прямую линию, проходящую через начало координат. Такую зависимость принято называть линейной .

Электрическое сопротивление для участка цепи определяется при помощи закона Ома. Для того, чтобы понять процессы, происходящие в элементах электрической цепи постоянного тока, необходимо дать общее определение закона Ома.

Закон Ома

Сила тока на участке цепи всегда прямо пропорциональна напряжению на данном участке и обратно пропорциональна сопротивлению участка.

Подобное определение будет верно также для растворов электролитов. Общий закон Ома характерен при описании однородного участка цепи, который не содержит источников тока.

При составлении формул вводятся дополнительные характеристики. Среди них коэффициент пропорциональности. Его записывают в виде $1=R$. Отсюда следует, что $I = \frac{U}{R}$.

$R$ – сопротивление проводника.

Сопротивление принято измерять в омах (Ом).

Закон Ома является главным законом в электротехнике. С помощью его:

  • изучаются и рассчитываются электрические цепи;
  • устанавливается логическое соотношение между сопротивлением и напряжением.

Определение 1

Вольтамперная характеристика – функциональная зависимость элемента участка цепи. Она является очень важной величиной электрических свойств элемента. Такую зависимость можно представить в виде $I = I(U)$.

Подобные характеристики в зависимости от ситуации могут приобретать различные формы и выражения. Наиболее простой вид вольтамперной характеристики выразил в формуле Георг Ом, в честь которого была названа единица сопротивления тока. Ученый подтвердил свою теорию многочисленными экспериментами, применяя опыты к металлическому проводнику.

Закон Ома необходимо понимать на теоретическом и практическом уровне, чтобы решать различные задачи. Если неправильно применять основные параметры закона, то результат приобретает неправильные черты, поэтому допускаются многочисленные ошибки.

Применение закона Ома для участка цепи

Каждый участок электрической цепи можно описать с помощью трех основных величин:

  • сопротивления;
  • напряжения;
  • тока.

Такое сочетание также называют «треугольником Ома», поскольку величины характеризуют все процессы электротехники.

Все производимые расчеты имеют смысл только в тех случаях, когда напряжение на участке цепи выражается в вольтах (В), сопротивление - в омах (Ом), а ток – в амперах (А). При использовании иных единиц измерений или их кратных значений необходимо осуществлять дополнительный ряд действий, чтобы искомый результат полностью соответствовал задачам и целям расчетов. Для этого кратные единицы используемых величин переводят в традиционные величины.

Кратные единицы измерений:

  • милливольты;
  • миллиамперы;
  • мегаомы.

При произведении расчетов в кратных единицах измерений величин напряжение всегда выражается в вольтах.

Для расчета сопротивления на участке цепи по закону Ома необходимо сначала определить ток на заданном участке цепи. Напряжение при этом делят на сопротивление конкретного участка цепи. Эти действия можно производить на любом участке без погрешности.

Для определения напряжения в цепи используют формулу $U = IR$.

Согласно указанной формуле, напряжение на обоих концах участка электрической цепи прямо пропорционально сопротивлению и току. Иными словами, если не стремиться все время изменять сопротивление на данном участке, то при увеличении тока применяется способ увеличения напряжения.

Значительному напряжению в цепи будет соответствовать больший ток. Эти правила действуют при постоянном сопротивлении. Для получении одинакового тока при различных сопротивлениях большее напряжение должно соответствовать большему сопротивлению.

Падение напряжения – это напряжение на определенном участке цепи. Это означает, что напряжение и падение напряжения – идентичные понятия, а слово «падение» никак не связано с потерей некоторого количества напряжения в цепи. Потерю напряжения следует различать от падения напряжения.

Расчет сопротивления

Сопротивление на участке цепи рассчитывается по классической формуле $R = \frac{U}{I}$. Для этого необходимо установить значения напряжения и тока. Сопротивление – отношение напряжения к току.

При многократном увеличении или уменьшении напряжения ток также изменяется в несколько раз в ту или иную сторону. Отношение напряжения к току, которое равно сопротивлению, всегда остается на неизменном уровне.

Сопротивление определенного проводника не зависит от напряжения и тока. Оно будет лежать в зависимости от материала проводника, его длины и площади сечения. Формула для расчета сопротивления на участке цепи очень похожа на формулу для определения тока, однако существует между ними принципиальное различие.

Оно состоит в том, что ток на конкретном участке цепи зависит от напряжения и сопротивления, поэтому изменяется таким же образом. Сопротивление на данном участке цепи – постоянная величина. Она не зависит от изменения значений тока и напряжения, однако равно отношению этих величин.

Вольтамперная характеристика

Закон Ома представляют в виде вольтамперной характеристики. Зависимость между двумя пропорциональными величинами выражается прямой линией на графике. Она проходит через начало координат. Подобную прямую пропорциональную зависимость величин также называют линейной зависимостью.

В графическом выражении закона Ома для участка цепи при отрицательных значениях напряжения и тока также рисуют прямую линию. Это означает, что ток в цепи проходит в разных направлениях одинаково. При большем сопротивлении меньшее значение имеет ток с таким же напряжением.

Вольтамперную характеристику составляют при помощи специальных приборов. Линейными называют такие приборы, у которых характеристика выражается прямой линией, и она проходит через начало координат.

Специалисты при составлении вольтамперной характеристики применяют также понятия линейные сопротивления и линейные цепи.

Определение 2

Нелинейными называют приборы, у которых сопротивление меняется при изменении тока или напряжения. Для таких случаев уже не действует закон Ома.