Цветовые модели. Что это и зачем про них нужно знать. Цветовая модель

RGB модель описывает излучаемые цвета. Она основана на трёх основных (базовых) цветах: красный (Red), зелёный (Green) и синий (Blue). RGB-модель можно назвать "родной" для дисплея. Остальные цвета получаются сочетанием базовых. Цвета такого типа называются аддитивными.

Из рисунка видно, что сочетание зелёного и красного дают жёлтый цвет, сочетание зелёного и синего - голубой, а сочетание всех трёх цветов - белый. Из этого можно сделать вывод о том, что цвета в RGB складываются субтрактивно.

Основные цвета взяты из биологии человека. То есть, эти цвета основаны на физиологической реакции человеческого глаза на свет. Человеческий глаз имеет фоторецептор клеток, реагирующих на наиболее зеленый (М), желто-зеленый (L) и сине-фиолетовый (S) света (максимальная длин волн от 534 нм, 564 нм и 420 нм соответственно). Человеческий мозг может легко отличить широкий спектр различных цветов на основе различий в сигналах, полученных от трех волн.

Наиболее широко RGB цветовая модель используется в ЖК или плазменных дисплеях, таких как телевизор или монитор компьютера. Каждый пиксель на дисплее может быть представлен в интерфейсе аппаратных средств (например, графические карты) в качестве значений красного, зеленого и синего. RGB значения изменяются в интенсивности, которые используются для наглядности. Камеры и сканеры также работают в том же порядке, они захватывают цвет с датчиками, которые регистрируют различную интенсивность RGB на каждый пиксель.

В режиме 16 бит на пиксель, также известном как Highcolor, есть либо 5 бит на цвет (часто упоминается как 555 режим) или с дополнительным битом для зеленого цвета (известен как 565 режим). Дополнен зеленый цвет из-за того, что человеческий глаз имеет способность выявлять больше оттенков зеленого, чем любого другого цвета.

RGB значения, представленные в режиме 24 бит на пиксель (bpp), известном также под именем Truecolor, обычно выделяется три целых значения между 0 и 255. Каждое из этих трех чисел представляет собой интенсивность красного, зеленого и синего соответственно.

В RGB - три канала: красный, синий и зелёный, т.е. RGB - трёхканальная цветовая модель. Каждый канал может принимать значения от 0 до 255 в десятичной или, что ближе к реальности, от 0 до FF в шестнадцатеричной системах счисления. Это объясняется тем, что байт, которым кодируется канал, да и вообще любой байт состоит из восьми битов, а бит может принимать 2 значения 0 или 1, итого 28=256. В RGB, например, красный цвет может принимать 256 градаций: от чисто красного (FF) до чёрного (00). Таким образом несложно подсчитать, что в модели RGB содержится всего 2563 или 16777216 цветов.

В RGB три канала, и каждый кодируется 8-ю битами. Максимальное, FF (или 255) значение даёт чистый цвет. Белый цвет получается путём сочетания всех цветов, точнее, их предельных градаций. Код белого цвета = FF(красный) + FF(зелёный) + FF(синий). Соответственно код чёрного = 000000. Код жёлтого = FFFF00, пурпурного = FF00FF, голубого = 00FFFF.

Также есть еще 32 и 48 битные режимы отображения цветов.

RGB не используется для печати на бумаге, вместо нее существует CMYK-цветовое пространство.

CMYK - это цветовая модель используемая в цветной печати. Цветовая модель является математической моделью для описания цветов целыми числами. CMYK модель построена на голубом, пурпурном, желтом и черном цветах.

Наука о цвете - ϶ᴛᴏ довольно сложная и широкомасштабная наука, в связи с этим в ней время от времени создаются различные цветовые модели, применяемые в той либо иной области. Одной из таких моделœей и является цветовой круг .

Многим известно о том, что существует 3 первичные цвета͵ которые невозможно получить и которые образуют всœе остальные. Основные цвета - ϶ᴛᴏ желтый, красный и синий. При

смешивании желтого с красным получается оранжевый, синœего с желтым – зелœеный, а красного с синим – фиолетовый. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, можно составить круг, который будет содержать всœе цвета. Он представлен на рис. и принято называть большим кругом Освальда .

Наряду с кругом Освальда есть еще и круг Гете , в котором основные цвета расположены в углах равностороннего треугольника, а дополнительные – в углах перевернутого треугольника.

Друг напротив друга расположены контрастные цвета.

Для описания излучаемого и отраженного цвета используются разные математические моделицветовые модели (цветовое пространство), ᴛ.ᴇ. - ϶ᴛᴏ способ описания цвета с помощью количественных характеристик. Цветовые модели бывают аппаратно–зависимыми (их пока большинство, RGB и CMYK в их числе) и аппаратно–независимыми (модель Lab). В большинстве ʼʼсовременныхʼʼ визуализационных пакетов (к примеру, в Photoshop) можно преобразовывать изображение из одной цветовой модели в другую.

В цветовой модели (пространстве) каждому цвету можно поставить в соответствие строго определœенную точку. В этом случае цветовая модель - ϶ᴛᴏ просто упрощенное геометрическое представление, основанное на системе координатных осœей и принятого масштаба.

Основные цветовые модели:

− CMY (Cyan Magenta Yellow);

− CMYK (Cyan Magenta Yellow Key, причем Key означает черный цвет);

− HSV (Hue, Saturation, Value);

− HLS (Hue, Lightness, Saturation);

− и другие.

В цифровых технологиях используются, как минимум четыре, базовых модели: RGB, CMYK, HSB в различных вариантах и Lab. В полиграфии используются также многочисленные библиотеки плашечных цветов.

Цвета одной модели являются дополнительными к цветам другой модели. Дополнительный цвет – цвет, дополняющий данный до белого. Дополнительный для красного – голубой (зелœеный+синий), дополнительный для зелœеного – пурпурный (красный+синий), дополнительный для синœего – желтый (красный+зелœеный) и т.д.

По принципу действия перечисленные цветовые модели можно условно разить на три класса:

− аддитивные (RGB), основанные на сложении цветов;

− субтрактивные (CMY, CMYK), основу которых составляет операция вычитания цветов (субтрактивный синтез);

− перцепционные (HSB, HLS, LAB, YCC), базирующиеся на восприятии.

Аддитивный цвет получается на базе законов Грассмана путем соединœения лучей света разных цветов. В корне этого явления лежит тот факт, что большинство цветов видимого спектра бывают получены путем смешивания в различных пропорциях трех базовых цветовых компонент. Этими компонентами, которые в теории цвета иногда называются первичными цветами, являются красный (R ed), зелœеный (G reen) и синий (В lue) цвета. При попарном смешивании пер– вичных цветов образуются вторичные цвета: голубой (С yan), пурпурный (M agenta) и желтый (Y ellow). Следует отметить, что первичные и вторичные цвета относятся к базовым цветам.

Базовыми цветами называют цвета͵ с помощью которых можно получить практически весь спектр видимых цветов.

Для получения новых цветов с помощью аддитивного синтеза можно использовать и различные комбинации из двух базовых цветов, варьирование состава которых приводит к изменению результирующего цвета.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, цветовые модели (цветовое пространство) представляют средства для концептуального и количественного описания цвета. Цветовой режим - ϶ᴛᴏ способ реализации определœенной цветовой модели в рамках конкретной графической программы.

Закон Грассмана (законы смешивания цветов)

В большинстве цветовых моделœей для описания цвета используется трехмерная система координат. Она образует цветовое пространство, в котором цвет можно представить в виде точки с тремя координатами. Для оперирования цветом в трехмерном пространстве Т. Грассман вывел три закона (1853г):

1. Цвет трехмерен – для его описания необходимы три компоненты. Лю­бые четыре цвета находятся в линœейной зависимости, хотя существует неограниченное число линœейно независимых совокупностей из трех цветов.

Иными словами, для любого заданного цвета можно записать такое цве­товое уравнение, выражающее линœейную зависимость цветов.

Первый закон можно трактовать и в более широком смысле, а именно, в смысле трехмерности цвета. Необязательно для описания цвета применять смесь других цветов, можно использовать и другие величины – но их обяза­тельно должно быть три.

2. В случае если в смеси трех цветовых компонент одна меняется непрерывно, в то время, как две другие остаются постоянными, цвет смеси также изме­няется непрерывно.

3. Цвет смеси зависит только от цветов смешиваемых компонент и не за­висит от их спектральных составов.

Смысл третьего закона становится более понятным, в случае если учесть, что один и тот же цвет (в том числе и цвет смешиваемых компонент) должна быть полу­чен различными способами. К примеру, смешиваемая компонента должна быть получена, в свою очередь, смешиванием других компонент.

Цветовая модель RGB

Это одна из наиболее распространенных и часто используемых моделœей. Она применяется в приборах, излучающих свет, таких, к примеру, как мониторы, прожекторы, фильтры и другие подобные устройства.

Данная цветовая модель базируется на трех базовых цветах: Red – красном, Green – зелœеном и Blue – синœем. Каждая из вышеперечисленных составляющих может варьироваться в пределах от 0 до 255, образовывая разные цвета и обеспечивая, таким образом, доступ ко всœем 16 миллионам (полное количество цветов, представляемых этой моделью равно 256*256*256 = 16 777 216.).

Эта модель аддитивная. Слово аддитивная (сложение) подчеркивает, что цвет получается при сложении точек трех базовых цветов, каждая своей яркости. Яркость каждого базового цвета может принимать значения от 0 до 255 (256 значений), таким образом, модель позволяет кодировать 256 3 или около 16,7 млн цветов. Эти тройки базовых точек (светящиеся точки) расположены очень близко друг к другу, так что каждая тройка сливается для нас в большую точку определœенного цвета. Чем ярче цветная точка (красная, зелœеная, синяя), тем большее количество этого цвета добавится к результирующей (тройной) точке.

При работе с графическим редактором Adobe PhotoShop можно выбирать цвет, полагаясь не только на тот, что мы видим, но при крайне важно сти указывать и цифровое значение, тем самым иногда, особенно при цветокоррекции, контролируя процесс работы.

Цветовая модель RGB

Данный вид цветовой модели базируется на трех основных цветах, смешение которых в различных пропорциях дает все остальные. Причем данные используемые краски отражены в названии модели: красный (Red), зеленый (Green) и синий (Blue) – RGB.

Цветовая модель RGB складывается субтрактивно. Дело в том, что полное сочетание всех трех цветов в их "чистом" виде, дает в итоге белый. Сама же модель относится к аддитивным цветовым моделям, потому как цвета получаются добавлением к черному.

Кодировка цветовой модели RGB происходит по трем каналам, каждый из которых имеет диапазон возможных принимаемых значений, равный 256 (от 0 до 255). В итоге, не сложно посчитать, что данная компьютерная цветовая модель сможет смоделировать 256*3 = 16777216 различных оттенков.

Цветовая модель CMYK

Данная цветовая модель имеет в своем основании 4 базовых цвета, также аббревиатурно заложенных в название: голубой (Cyan), малиновый (Magenta), желтый (Yellow) и черный (blacК). Для черного выбрали последнюю букву, так как В была уже занята синим цветом в модели RGB.

Их смешение происходит аддитивно, но образование имеет субтрактивную основу: они получаются путем вычитания цветов из белого (например, пурпурный выходит вычитанием зеленого и т.п.). Именно поэтому субтрактивную цветовую модель иногда еще называют исключающей.

Цветовая модель CMYK является основной в полиграфии. Она часто применяется в цветных принтерах и плоттерах. При этом необходимо отметить, что цветовая модель CMYK по сравнению с RGB имеет меньшее количество получаемых оттенков. Это необходимо учитывать при конвертации.

Более подробно о данной цветовой модели в компьютерной графике мы расскажем на странице нашей статьи: "Цветовая модель CMYK".

Цветовая модель HSB (HSV)

Если рассматривать данную цветовую модель, то в первую очередь бросается в глаза ее сходство с RGB. Базовые цвета этих моделей совпадают. Зачем же тогда было создавать новую модель?

На самом деле цветовая модель HSB имеет совсем иную систему координат. В ее основе лежат такие параметры, как тон (Hue), насыщенность (Saturation) и яркость (Brightness/Value). В цветовой модели HSV множество получаемых цветов представляет собой шестиугольник, все шесть вершин которого являются пиком одного из основных цветов: красный, зеленый, синий (RGB), голубой, малиновый, желтый (CYM). Черный цвет выведен в качестве вершины конуса. Он регулируется таким параметром, как яркость.

Цветовая модель HSV более ориентирована на интуитивное понятие человека о цвете и тоне.

Цветовая модель HSL

Такая компьютерная цветовая модель по своей основе похожа на HSB (HSV). Но ее основными параметрами являются: тон (Hue), светлота (Lightness) и насыщенность (Brightness/Value). Если представить цветовую модель HSL в виде фигуры, то это будет двойной (отраженный) шестигранный конус. Его основанием, как и у HSB (HSV), служат базовые цвета, а вершинами: белый цвет, регулируемый насыщенностью, и черный, характеризуемый светлотой.

Таким образом, цветовая модель HSL является одним из наиболее ярких примеров интуитивных понятий тона, насыщенности и яркости (светлоты).

В основе этого цветового пространства лежит уже знакомое нам радужное кольцо RGB. Цвет управляется изменением таких параметров, как:

Hue - оттенок или тон;

Saturation - насыщенность цвета;

Brightness - яркость.

Параметр hue - это цвет. Определяется градусами от 0 до 360 исходя из цветов радужного кольца.

Параметр saturation - процент добавления к этому цвету белой краски имеет значение от 0% до 100%.

Параметр Brightness - процент добавления черной краски так же изменяется от 0% до 100%.

Принцип похож на одно из представлений света с точки зрения изобразительного искусства. Когда в уже имеющиеся цвета добавляют белую или черную краску.

Это самая простая для понимания цветовая модель, поэтому ее очень любят многие web-дизайнеры. Однако она имеет ряд недостатков:

Глаз человека воспринимает цвета радужного кольца, как цвета, имеющие различную яркость. Например, спектральный зелёный имеет большую яркость, чем спектральный синий. В цветовой модели HSB все цвета этого круга считаются обладающими яркостью в 100%, что, к сожалению, не соответствует действительности.

Так как в её основе лежит цветовая модель RGB, она, все же является аппаратно-зависимой.

Эта цветовая модель конвертируется для печати в CMYK и конвертируется в RGB для отображения на мониторе. Так что догадаться, каким у вас в конечном счете получится цвет бывает весьма проблематично.

Аналогична этой модели цветовая модель HLS (расшифровка: hue, lightness, saturation).

Иногда используются для коррекции света и цвета в изображении.

Цветовая модель LAB

Данная компьютерная цветовая модель является аппаратно-независимой. Это позволяет ей служить стандартом для оптимизации других моделей с целью получения предсказуемого цвета на различных устройствах (сканнер, принтер, монитор). Цветовая модель LAB является трехканальной. При этом, изменение цветов происходит по таким параметрам, как а – от зеленого к красному и b – от синего к желтому. Яркость цвета в данной цветовой модели отделена от параметров а и b. Это делает более удобным регулировку яркости, резкости и тона.

Цветовая модель LAB позволяет оптимизировать растровый файл под различные устройства и привести их визуализацию к одному цвету.

В данной статье мы рассказали вам об основных цветовых моделях в компьютерной графике, описали их особенности и возможности, выделили наиболее значимые характеристики и параметры. Теперь вы сможете попробовать самостоятельно "поиграть" с цветами и цветовыми моделями в любой графической программе. Удачных вам экспериментов и ярких свершений!

Аппаратно-зависимые и аппаратно-независимые цветовые модели

Цветовые модели CMYK и RGB являются аппаратно-зависимыми, то есть они зависят от способа передачи нам цвета. Они указывают конкретному устройству, как использовать соответствующие им красители, но не имеют сведений о восприятии конечного цвета человеком. В зависимости от настроек яркости, контрастности и резкости монитора компьютера, освещенности помещения, угла, под которым мы смотрим на монитор, цвет с одними и теми же параметрами RGB воспринимается нами по-разному. А восприятие человеком цвета в цветовой модели "CMYK" зависит от еще большего ряда условий, таких как свойства запечатываемого материала (например, глянцевая бумага впитывает меньше краски, чем матовая, соответственно цвета на ней получаются более яркие и насыщенные), особенности краски, влажности воздуха, при котором сохла бумага, характеристик печатного станка…

Чтобы передать человеку более достоверную информацию о цвете, к аппаратно-зависимым цветовым моделям прикрепляют так называемые цветовые профили. Каждый из такого профиля содержит информацию о конкретном способе передачи человеку цвета и регулирует конечный цвет с помощью добавления или изъятия из какого-либо составляющего первоначального цвета параметров. Например, для печати на глянцевой пленке используется цветовой профиль, убирающий 10% Cyan и добавляющий 5% Yellow к первоначальному цвету, из-за особенностей конкретной печатной машины, самой пленки и прочих условий. Однако даже прикрепленные профили не решают всех проблем передачи нам цвета.

Аппаратно-независимые цветовые модели не несут в себе сведений для передачи цвета человеку. Они математически описывают цвет, воспринимаемый человеком с нормальным цветным зрением.

Цветовая модель

Цветовая модель - термин, обозначающий абстрактную модель описания представления цветов в виде кортежей чисел, обычно из трёх или четырёх значений, называемых цветовыми компонентами или цветовыми координатами . Вместе с методом интерпретации этих данных (например, определение условий воспроизведения и/или просмотра - то есть задание способа реализации), множество цветов цветовой модели определяет цветовое пространство .

Трёхкомпонентное цветовое пространство стимулов

Человек является трихроматом - сетчатка глаза имеет 3 вида рецепторов света, ответственных за цветное зрение (см.: колбочки). Каждый вид колбочек реагирует на определённый диапазон видимого спектра . Отклик, вызываемый в колбочках светом определённого спектра, называется цветовым стимулом , при этом свет с разными спектрами может иметь один и тот же цветовой стимул и, таким образом, восприниматься человеком одинаково. Это явление называется метамерией - два излучения с разными спектрами, но одинаковыми цветовыми стимулами, будут неразличимы для человека.

Трёхмерное представление цветового пространства человека

Можно определить цветовое пространство стимулов как линейное пространство , если задать координаты x, y, z в качестве значений стимулов, соответствующих отклику колбочек длинноволнового (L), средневолнового (M) и коротковолнового (S) диапазона оптического спектра. Начало координат (S, M, L) = (0, 0, 0) будет представлять чёрный цвет. Белый цвет не будет иметь чёткой позиции в данном определении диаграммы всевозможных цветов, а будет определяться, например, через цветовую температуру , определённый баланс белого или каким-либо иным способом. Полное цветовое пространство человека имеет вид конуса в форме подковы (см. рисунок справа). Принципиально данное представление позволяет моделировать цвета любой интенсивности - начиная с нуля (чёрного цвета) до бесконечности. Однако, на практике, человеческие рецепторы могут перенасытиться или даже быть повреждены излучением с экстремальной интенсивностью, поэтому данная модель не применима для описания цвета в условиях чрезвычайно высоких интенсивностей излучений и также не рассматривает описание цвета в условиях очень низких интенсивностей (поскольку у человека задействуется иной механизм восприятия через палочки).

Являясь линейным пространством, пространство цветовых стимулов имеет свойство аддитивного смешивания - сумма двух цветовых векторов будет соответствовать цвету, равному получаемому смешением этих двух цветов (см. также: Закон Грассмана). Таким образом, можно описывать любые цвета (вектора цветового пространства) через линейную комбинацию цветов, выбранных в качестве базиса . Такие цвета называют основными (англ. primary colors ). Чаще всего в качестве основных цветов выбирают красный, зелёный и синий (модель RGB), однако возможны другие варианты базиса основых цветов. Выбор красного, зелёного и синего оптимален по ряду причин, например потому что при этом минимизируется количество точек цветового пространства, для представления которых используются отрицательные координаты, что имеет практическое значения для цветовоспроизведения (нельзя воспроизводить цвет излучением с отрицательной интенсивностью). Этот факт следует из того что пики чувствительностей L,M и S колбочек приходятся на красный, зелёный и синий части видимого спектра.

Некоторые цветовые модели используются для цветовоспроизведения , например воспроизведения цвета на экранах телевизоров и компьютеров, или цветной печати на принтерах. Используя явление метамерии, устройства цветовоспроизведения не воспроизводят оригинальный спектр изображения, а лишь имитируют стимульную составляющую этого спектра, что в идеале позволяет получить картину неотличимую человеком от оригинальной сцены.

Цветовое пространство CIE XYZ

Цветовое пространство XYZ - это эталонная цветовая модель, заданная в строгом математическом смысле организацией CIE (International Commission on Illumination - Международная комиссия по освещению) в 1931 году. Модель XYZ является мастер-моделью практически всех остальных цветовых моделей, используемых в технических областях.

Функции цветового соответствия

Являясь трихроматом, человек имеет три типа светочувствительных детекторов или, другими словами, зрение человека трёхкомпонентно . Каждый тип детекторов (колбочек) имеет различающуюся чувствительность к разным длинам волн спектра, что описывается функцией спектральной чувствительности (которая напрямую определяется видом конкретных молекул фотопсинов , используемых данным типом колбочек). Можно сказать, что глаз, как детектор, выдает три вида сигнала (нервные импульсы). С математической точки зрения, из спектра (описываемого бесконечномерным вектором) путём умножения на функции спектральной чувствительности колбочек получается трёхкомпонентный вектор, описывающий детектируемый глазом цвет. В колориметрии данные функции принято называть функциями цветового соответствия (англ. color matching functions ).

Эксперименты, проведённые Дэвидом Райтом (англ. David Wright ) и Джоном Гилдом (англ. John Guild ) в конце 1920-х и начале 1930-х годов, послужили основой для определения функций цветового соответствия. Изначально функции цветового соответствия были определены для 2-градусного поля зрения (использовался соответствующий колориметр). В 1964 году комитет CIE опубликовал дополнительные данные для 10-градусного поля зрения.

При этом в определении кривых модели XYZ заложен фактор своевольности - форма каждой кривой может быть измерена с достаточной точностью, однако кривая суммарной интенсивности (или сумма всех трёх кривых) заключает в своём определении субъективный момент, при котором реципиента просят определить, имеют ли два источника света одинаковую яркость, даже если эти источники абсолютно разного цвета. Также, имеется произвольность относительной нормировки кривых X, Y и Z, поскольку можно предложить альтернативную работающую модель, в которой кривая чувствительности X имеет двукратно усиленную амплитуду. При этом цветовое пространство будет иметь иную форму. Кривые X, Y и Z в модели CIE XYZ 1931 и 1964 были выбраны таким образом, чтобы площади поверхности под каждой кривой были равны между собой.

Хроматические координаты Yxy

На рисунке справа представлена классическая хроматическая диаграмма модели XYZ с длинами волн цветов. Значения x и y в ней соответствуют X, Y и Z согласно следующим формулам:

x = X/ (X + Y + Z ), y = Y/ (X + Y + Z ).

В математическом смысле данную хроматическую диаграмму можно представить как подобласть действительной проективной плоскости , при этом x и y будут являться проективными координатами цветов. Данное представление позволяет задавать значение цвета через светлоту Y (англ. luminance ) и две координаты x , y . Однако светлота Y в модели XYZ и Yxy - это не то же самое, что яркость Y в модели YUV или YCbCr .

Обычно диаграмма Yxy используется для иллюстрации характеристик гамутов различных устройств воспроизведения цвета - дисплеев и принтеров. Конкретный гамут обычно имеет вид треугольника, углы которого образованы точками основных , или первичных , цветов. Внутренняя область гамута описывает все цвета, которые способно воспроизвести данное устройство.

Особенности цветного зрения

Значения X , Y и Z получаются путём умножения физического спектра излучения на функции цветового соответствия. Синяя и красная часть спектра оказывают меньшее влияние на воспринимаемую яркость, что может быть продемонстрировано на примере:

red
КРАСНЫЙ
green
ЗЕЛЁНЫЙ
blue
СИНИЙ
yellow
КРАСНЫЙ
+ЗЕЛЁНЫЙ
aqua/cyan
ЗЕЛЁНЫЙ
+СИНИЙ
fuchsia/magenta
КРАСНЫЙ
+СИНИЙ
black
ЧЁРНЫЙ
white
КРАСНЫЙ
+ЗЕЛЁНЫЙ
+СИНИЙ

Для среднестатистического человека, имеющего нормальное цветовое зрение, зелёный будет восприниматься ярче синего. В то же время, хотя чистый синий цвет воспринимается как очень неяркий (если рассматривать надпись синего цвета с большого расстояния, то её цвет будет трудно отличить от чёрного), в смеси с зелёным или красным воспринимаемая яркость значительно повышается.

При определённых формах дальтонизма зелёный цвет может восприниматься эквивалентно-ярким синему, а красный как очень тёмный, либо вообще как неразличимый. Люди с дихромией - нарушением восприятия красного, например, не способны видеть красный сигнал светофора при ярком солнечном дневном свете. При дейтеранопии - нарушении восприятия зелёного, в ночных условиях зелёный сигнал светофора становится неотличимым от света уличных фонарей.

Классификация

Цветовые модели можно классифицировать по их целевой направленности:

  1. XYZ - описание восприятия; L*a*b* - то же пространство в других координатах.
  2. Аддитивные модели - рецепты получения цвета на мониторе (например, RGB).
  3. Полиграфические модели - получение цвета при использовании разных систем красок и полиграфического оборудования (например, CMYK).
  4. Модели, не связанные с физикой оборудования, являющиеся стандартом передачи информации.
  5. Математические модели, полезные для каких-либо способов цветокоррекции, но не связанные с оборудованием, например HSV .

Распространённые цветовые модели

См. также

Примечания

Ссылки

  • Алексей Шадрин, Андрей Френкель. Color Management System (CMS) в логике цветовых координатных систем. Часть I , Часть 2 , Часть 3

Цветовые модели. Закон Грассмана. Модели RGB, CMYK, Lab, HSB. Глубина цвета. Черно-белый и полутоновой режим. Плашечные цвета. Кодирование цвета, палитры. Проблема цветового охвата. Цветовые профили. Управление цветами. Цветоделение.

Цветовые модели и их виды

Наука о цвете – это довольно сложная и широкомасштабная наука, поэтому в ней время от времени создаются различные цветовые модели, применяемые в той либо иной области. Одной из таких моделей и является цветовой круг .

Cуществует 3 первичные цвета, которые невозможно получить и которые образуют все остальные. Основные цвета – это желтый, красный и синий. При смешивании желтого с красным получается оранжевый, синего с желтым – зеленый, а красного с синим – фиолетовый. Таким образом, можно составить круг, который будет содержать все цвета. Он представлен на рис. и называется большим кругом Освальда .

Наряду с кругом Освальда есть еще и круг Гете , в котором основные цвета расположены в углах равностороннего треугольника, а дополнительные – в углах перевернутого треугольника.

Друг напротив друга расположены контрастные цвета.

Для описания излучаемого и отраженного цвета используются разные математические модели – цветовые модели (цветовое пространство) – это способ описания цвета с помощью количественных характеристик. Цветовые модели могут быть аппаратно–зависимыми (их пока большинство, RGB и CMYK в их числе) и аппаратно–независимыми (модель Lab). В большинстве «современных» визуализационных пакетов (например, в Photoshop) можно преобразовывать изображение из одной цветовой модели в другую.

В цветовой модели (пространстве) каждому цвету можно поставить в соответствие строго определенную точку. В этом случае цветовая модель – это просто упрощенное геометрическое представление, основанное на системе координатных осей и принятого масштаба.

Основные цветовые модели:

    CMY (Cyan Magenta Yellow);

    CMYK (Cyan Magenta Yellow Key, причем Key означает черный цвет);

    HSV (Hue, Saturation, Value);

    HLS (Hue, Lightness, Saturation);

    и другие.

В цифровых технологиях используются, как минимум, четыре основных модели: RGB, CMYK, HSB в различных вариантах и Lab. В полиграфии используются также многочисленные библиотеки плашечных цветов.

Цвета одной модели являются дополнительными к цветам другой модели. Дополнительный цвет – цвет, дополняющий данный до белого. Дополнительный для красного – голубой (зеленый+синий), дополнительный для зеленого – пурпурный (красный+синий), дополнительный для синего – желтый (красный+зеленый) и т.д.

По принципу действия перечисленные цветовые модели можно условно разбить на три класса:

    аддитивные (RGB), основанные на сложении цветов;

    субтрактивные (CMY, CMYK), основу которых составляет операция вычитания цветов (субтрактивный синтез);

    перцепционные (HSB, HLS, LAB, YCC), базирующиеся на восприятии.

Аддитивный цвет получается на основе законов Грассмана путем соединения лучей света разных цветов. В основе этого явления лежит тот факт, что большинство цветов видимого спектра могут быть получены путем смешивания в различных пропорциях трех основных цветовых компонент. Этими компонентами, которые в теории цвета иногда называются первичными цветами, являются красный (R ed), зеленый (G reen) и синий (В lue) цвета. При попарном смешивании первичных цветов образуются вторичные цвета: голубой (С yan), пурпурный (M agenta) и желтый (Y ellow). Следует отметить, что первичные и вторичные цвета относятся к базовым цветам.

Базовыми цветами называют цвета, с помощью которых можно получить практически весь спектр видимых цветов.

Для получения новых цветов с помощью аддитивного синтеза можно использовать и различные комбинации из двух основных цветов, варьирование состава которых приводит к изменению результирующего цвета.

Таким образом, цветовые модели (цветовое пространство) представляют средства для концептуального и количественного описания цвета. Цветовой режим – это способ реализации определенной цветовой модели в рамках конкретной графической программы.