Симметрирующие антенные трансформаторы схемы и расчет. Тюнер для симметричной линии. Зачем нужны фрактальные антенны

Изобретение относится к антенно-фидерным устройствам и может использоваться в сверхширокополосных антеннах, работающих в диапазонах ультравысоких (УВЧ), сверхвысоких (СВЧ) и крайне высоких (KBЧ) частот, в частности в спиральных и логопериодической вибраторной антеннах, где коэффициент перекрытия рабочего диапазона частот достигает до 50. Согласующий симметрирующий трансформатор представляет собой микрополосковый вариант клинообразного трансформатора, который помещен в металлический экран и дополнен двумя отрезками субминиатюрного коаксиального кабеля. Отрезки субминиатюрного коаксиального кабеля экранами гальванически соединены между собой и с экраном трансформатора и включены своими центральными проводниками между симметричными выходами трансформатора и расположенными напротив них точками питания антенны. Применение в согласующем симметрирующем трансформаторе дополнительных экрана и отрезков субминиатюрного коаксиального кабеля обеспечивает достижение технического результата - расширение рабочего диапазона частот сверхширокополосных антенн в область более высоких частот (СВЧ и КВЧ). 3 ил.

Изобретение относится к антенно-фидерным устройствам и может использоваться в сверхширокополосных антеннах, работающих в диапазонах ультравысоких (УВЧ), сверхвысоких (СВЧ) и крайневысоких (КВЧ) частот.

Важнейшим элементом любой антенны является устройство питания - цепь, соединяющая излучающие элементы со стандартным фидером. Устройства питания должны обеспечивать минимальный коэффициент стоячей волны (КСВН) во всем рабочем диапазоне частот и переход от несимметричной линии питания к симметричной там, где это необходимо. В антеннах, имеющих симметричные излучающие структуры и симметричные точки питания, применяются согласующие симметрирующие трансформаторы различной конструкции. В диапазонах УВЧ и СВЧ широко используется согласующее симметрирующее устройство в виде плавного перехода от коаксиальной линии к двухпроводной - кососрезанный или клинообразный трансформатор (В.Рамзей. Частотно независимые антенны. Издательство «Мир», Москва, 1968 г., стр.20, 21. Сверхширокополосные антенны. Под редакцией Л.С.Бененсона. Издательство «Мир», Москва, 1964 г., стр.386).

Недостатком этого устройства является излучение в верхней части рабочего диапазона частот за счет возбуждения волн высших типов (А.Б.Горощеня. Проектирование широкополосных антенн. Учебное пособие. Омск, 1989 г., стр.83).

Известен и используется микрополосковый вариант клинообразного трансформатора (Карл Ротхаммель. Антенны. Том 1, ОМО «Наш город», 2001 г., стр.140). Однако при применении его в сверхширокополосных антеннах с ростом частоты начинает сказываться антенный эффект линии питания, что приводит к искажению диаграмм направленности антенн.

В статье Thorsten W.Herber и Glenn S. Smith «Analysis and Design of Two-Arm Conical Spiral Antennas» (IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPABILITY, VOL. 44, N 0.1, FEBRUARY 2002, стр.29) приведен схематичный рисунок устройства возбуждения конической спиральной антенны. Устройство состоит из симметрирующего трансформатора и соединенной с ним линии питания из двух электрически соединенных кабелей. Однако каких-либо сведений о влиянии такой линии питания на характеристики антенны и о возможности расширения рабочего диапазона частот в статье не приведено.

Целью изобретения является разработка согласующего симметрирующего трансформатора, способного обеспечить расширение рабочего диапазона частот сверхширокополосных антенн в область более высоких частот (СВЧ и KBЧ).

Указанная цель достигается за счет того, что согласующий симметрирующий трансформатор, выполненный в виде микрополоскового варианта клинообразного трансформатора, помещается в металлический экран и дополняется двумя отрезками субминиатюрного коаксиального кабеля, соединенными своими экранами между собой и с экраном трансформатора и включенными своими центральными проводниками между симметричными выходами трансформатора и точками питания антенны.

На рис.1 изображена конструкция трансформатора, где 1 - точки питания антенны, 2 - отрезки субминиатюрного коаксиального кабеля, 3 - металлический экран, 4 - микрополосковый вариант клинообразного трансформатора.

Согласующий симметрирующий трансформатор представляет собой микрополосковый вариант клинообразного трансформатора, который помещен в металлический экран и дополнен двумя отрезками субминиатюрного коаксиального кабеля. Отрезки субминиатюрного коаксиального кабеля экранами гальванически соединены между собой и с экраном трансформатора и включены своими центральными проводниками между симметричными выходами трансформатора и расположенными напротив них точками питания антенны.

Улучшение работы антенн в верхней части рабочего диапазона частот обусловлено тем, что согласующий симметрирующий трансформатор к точкам возбуждения антенн подходит в виде двухпроводной линии, у которой каждый из проводников заключен в металлический экран, а открытые участки центральных проводников имеют минимальную длину. Это исключает взаимодействие токов в излучающих элементах с токами трансформатора и снижает антенный эффект линии питания.

Влияние металлического экрана и дополнительных отрезков субминиатюрного коаксиального кабеля иллюстрируют приведенные на рис.2 и 3 диаграммы направленности антенны, измеренные на одной и той же верхней частоте рабочего диапазона (диапазон КВЧ).

На рис.2 представлены диаграммы направленности антенны с согласующим симметрирующим трансформатором без дополнительных отрезков субминиатюрного коаксиального кабеля и экрана. Видно, что антенна имеет изрезанные диаграммы направленности неудовлетворительной формы.

На рис.3 представлены диаграммы направленности антенны с согласующим симметрирующим трансформатором, дополненным двумя отрезками субминиатюрного коаксиального кабеля и экраном. Диаграммы направленности изрезанности практически не имеют, их форма монотонна и вполне удовлетворительна. Это означает, что антенна с введенными изменениями работоспособна в рабочем диапазоне, расширенном в область более высоких частот (СВЧ и КВЧ).

Таким образом, применение в согласующем симметрирующем трансформаторе дополнительных экрана и отрезков субминиатюрного коаксиального кабеля обеспечивает расширение рабочего диапазона частот сверхширокополосных антенн в область более высоких частот (СВЧ и КВЧ).

Предложенный согласующий симметрирующий трансформатор успешно использован в спиральных и логопериодической вибраторной антеннах, при этом коэффициент перекрытия рабочего диапазона частот достигал 50.

Согласующий симметрирующий трансформатор, содержащий микрополосковый клинообразный трансформатор, отличающийся тем, что микрополосковый клинообразный трансформатор помещен в металлический экран, дополнен двумя отрезками субминиатюрного коаксиального кабеля, соединенными своими экранами между собой и с экраном трансформатора и включенными своими центральными проводниками между симметричными выходами трансформатора и точками питания антенны.

Похожие патенты:

Изобретение относится к области электротехники, в частности к высоковольтным высокочастотным трансформаторам с твердой изоляцией и интенсивным охлаждением, преимущественно жидкостным, которые могут быть использоваться в качестве высоковольтных источников питания различного применения.

Изобретение относится к электротехнике и может быть использовано для согласования высокочастотных радиотехнических устройств, имеющих высокие входное и выходное сопротивления, включенных в низкоомные тракты. Технический результат состоит в повышении коэффициента связи между первичной и вторичной обмотками трансформатора с произвольным и высоким коэффициентом трансформации. Вторичная обмотка выполнена в виде N одинаковых обмоток связи, соединенных параллельно и размещенных поверх первичной обмотки в центральной ее части, где магнитный поток, обусловленный первичной обмоткой, максимален. Витки каждой обмотки связи частично размещены в одной из N диэлектрических трубок соответственно. Причем первые несколько витков и последние несколько витков первичной обмотки частично размещены в первой и второй дополнительных диэлектрических трубках соответственно, расположенных на краях первичной обмотки. Каждая из N+2 диэлектрических трубок расположена в средней части тороидального сердечника, а их длина примерно равна высоте тороидального сердечника. 1 ил.

Изобретение относится к электротехнике и может быть использовано в цепях переменного тока для преобразования напряжения. Кольцевой магнитоэлектрический трансформатор с подмагничиванием представляет собой структуру, выполненную в виде включенного во входную цепь магнитоэлектрического конденсатора, диэлектриком которого является объемный магнитострикционно-пьезоэлектрический композиционный материал в форме плоского кольца, на внутреннюю и внешнюю поверхности которого нанесены электроды, и намотанной на него катушки индуктивности. При подаче на конденсатор переменного напряжения в пьезоэлектрической фазе композиционного материала создаются механические напряжения, которые передаются в магнитострикционную фазу, вследствие чего происходит изменение намагниченности, приводящее к индуцированию ЭДС в намотанной на образец катушке индуктивности. В выходную цепь дополнительно включен конденсатор, с которого снимается переменный выходной сигнал. Катушка индуктивности одновременно используется для создания поля подмагничивания, что приводит к увеличению эффективности действия трансформатора. 1 ил.

Изобретение относится к электротехнике и может быть использовано в радиотехнике, в частности в трансформаторных устройствах и устройствах суммирования мощности при построении радиопередатчиков KB-УКВ диапазона. Технический результат состоит в выравнивании магнитного поля в различных частях сердечника трансформаторного устройства при его работе вблизи когерентного источника сильного магнитного поля. В цилиндрическом ферромагнитном сердечнике по длине выделяются две равные части. На каждой из частей сердечника располагают дополнительные обмотки, включенные между собой встречно-последовательно. Причем числа витков в дополнительных обмотках выбираются одинаковыми. 1 з.п. ф-лы, 3 ил.

Изобретение относится к электротехнике и может быть использовано в радиотехнике в трансформаторных устройствах и устройствах суммирования мощности при построении радиопередатчиков КВ-УКВ диапазонов. Внутри протяженного ферритового сердечника высокочастотного (ВЧ) трансформатора на его оси установлена цилиндрическая трубка из электропроводящего материала, которая около торцевых границ сердечника соединяется электропроводящими перемычками с соответствующими выводами оплетки отрезка ВЧ кабеля, проходящего внутри трубки. Технический результат состоит в выравнивании магнитного поля в радиальном направлении ферритового сердечника высокочастотного трансформатора. 3 ил.

Изобретение относится к антенно-фидерным устройствам и может использоваться в сверхширокополосных антеннах, работающих в диапазонах ультравысоких, сверхвысоких и крайне высоких частот, в частности в спиральных и логопериодической вибраторной антеннах, где коэффициент перекрытия рабочего диапазона частот достигает до 50

Напряжение между каждой фазой трехфазной сети переменного тока и нулевым проводом, в идеальном случае, составляет 220 Вольт. Однако, при подключении к каждой из фаз питающей сети различных нагрузок, отличающихся по характеру и по величине, возникает иногда довольно значительный перекос фазных напряжений.

Если бы соблюдалось равенство сопротивлений нагрузок, то и протекающие через них токи также были бы равны между собой. Их геометрическая сумма была бы обращена в нуль. Но в результате неравенства этих токов возникает уравнительный ток в нулевом проводе (происходит смещение нулевой точки) и появляется напряжение смещения .

Фазные напряжения меняются друг относительно друга, и получается перекос фаз . Следствием такого перекоса фаз становится увеличение потребления электроэнергии из сети и неправильная работа электроприемников, ведущая к сбоям, отказам, и преждевременному износу изоляции. Безопасность потребителя, в такой ситуации, ставится под угрозу.

Для автономных трехфазных источников электроэнергии неравномерность загрузки фаз чревата разного рода механическими повреждениями. В результате – нарушение работы электроприемников, износ источников электроэнергии, повышенный расход масла, топлива и охлаждающей жидкости для генератора. В конечном итоге увеличиваются расходы как на электроэнергию в целом, так и на расходные материалы для генератора.

Для устранения перекоса фаз, выравнивания фазных напряжений, следует изначально рассчитать токи нагрузок для каждой из трех фаз. Однако не всегда удается это сделать заранее. В промышленных же масштабах потери вследствие перекоса фазных напряжений могут быть просто колоссальными, а экономический эффект, в определенной степени, разрушительным.

Для устранения негативных тенденций следует применить симметрирование фаз . Для этой цели разработаны так называемые симметрирующие трансформаторы .

В трехфазный трансформатор, обмотки фаз как высшего, так и низшего напряжений которого соединены звездой, встраивается дополнительно симметрирующее устройство в виде дополнительной обмотки, которая опоясывает обмотки высокого напряжения. Эта дополнительная обмотка рассчитана так, чтобы выдерживать длительный ток номинальной нагрузки трансформатора, т.е. на номинальный ток одной фазы. Обмотка включается в разрыв нулевого провода трансформатора из следующего расчета.

При возникновении уравнительного тока в нулевом проводе, вследствие несимметричной нагрузки, потоки нулевой последовательности в магнитопроводе (рабочих обмоток трансформатора) будут полностью компенсированы направленными противоположно потоками нулевой последовательности симметрирующей обмотки. В конечном счете, перекос фазных напряжений целиком предотвращается.

Схема включения обмоток трехфазного трансформатора для симметрирования фаз показана на рисунке 1.

Рис. 1. Устройство симметрирующего трансформатора

1) Трехстержневой магнитопровод трехфазного трансформатора.

2) Обмотки высокого напряжения.

3) Обмотки низкого напряжения.

4) Обмотка из компенсационных витков.

5) Дистанционные клинья.

6) Конец компенсационной обмотки, подключаемой к нейтрали обмоток низкого напряжения.

7) Конец компенсационной обмотки, который выводится наружу.

Энергетические характеристики таких трансформаторов, короткого замыкания, и другие, от добавления симметрирующего устройства почти не меняются, зато значительно сокращаются потери электроэнергии в сети. При неравномерной нагрузке фаз, система фазных напряжений симметрируется так же, как и при соединении обмоток по схеме звезда-зигзаг.

Расчеты и эксперименты исследователей показали, что при правильном согласовании витков компенсационных и рабочих обмоток, напряжение на компенсационной обмотке трансформатора с симметрирующим устройством, при равном номинальному токе в нулевом проводе, достигает величины номинального фазного напряжения, уравновешивая на нейтрали обмоток низкого напряжения ЭДС нулевой последовательности, возникающей от рабочих обмоток, до нуля.

Такая конструкция сильно снижает сопротивление нулевой последовательности трехфазного силового трансформатора. Это дает значительное увеличение токов короткого замыкания на одной фазе, и является одним из главных достоинств симметрирующих трансформаторов, так как обеспечивает надежную и легкую настройку и ее надежную работу при КЗ.

Более того, разрушающее воздействие большого тока однофазного КЗ на обмотки такого симметрирующего трансформатора значительно меньше, чем от тока КЗ в отсутствие обмотки симметрирования, так как разрушительный мощный несимметричный поток нулевой последовательности теперь полностью компенсируется.

По сравнению с коаксиальным кабелем симметричная линия имеет очень низкие потери при больших значениях КСВ (когда коаксиальный кабель практически неработоспособен) и возможность настройки практически любого вибратора в резонанс при электрическом удлинении или укорочении линии (это открывает широкое поле деятельности при создании качественных многодиапазонных антенн ).

Непосредственное подключение симметричной линии к несимметричному выходу оконечного каскада передатчика, как правило, приводит к негативным результатам. Даже если после элементов согласования П-контура установить симметрирующий широкополосный трансформатор или применить Т-образной тюнер с симметрирующим трансформатором на выходе, удовлетворительной работы можно добиться только при минимальной реактивности на входе симметричной линии. Один из таких примеров - питание вибратора в пучности напряжения с помощью симметричной линии, длина которой составляет А,/4 рабочего диапазона частот (или кратна нечетному количеству длин L/4). У такой антенны симметричная линия является трансформатором, согласующим низкое входное сопротивление трансивера с высоким сопротивлением антенны. Как правило, под такую антенную систему рассчитаны симметричные выходы в различных импортных Т-образных тюнерах.

Если же реактивность на входе симметричной линии (в точке под ключения трансивера или тюнера) велика, то в силу того, что широкополосные трансформаторы плохо работают на реактивную нагрузку, потери в антенно-фидерной системе будут велики, и при большой мощности передатчика широкополосный трансформатор может выйти из строя. Разумеется, в такой антенно-фидерной системе теряются все выгоды применения симметричной линии.

Для того чтобы в полной мере использовать замечательные свойства симметричной линии, необходим симметричный тюнер, элементы трансформации и компенсации реактивных составляющих которого непосредственно «работают с импедансом» симметричной линии, т.е. компенсируют реактивность на входе линии.

Некоторые зарубежные фирмы выпускают симметричные тюнеры. К сожалению, эти устройства довольно дороги (например, хорошо зарекомендовавший себя в работе на симметричную линию антенный тюнер MFJ- 976 стоит почти 500 USD). Это приводит нас, радиолюбителей, к мысли о самостоятельном изготовлении такой конструкции.

Схема симметричного тюнера, который имеет элементы трансформации сопротивлений и компенсации реактивных составляющих, приведена ниже.

Эта схема с так называемым V-образным или (3 (бета)-согласованием . Принцип ее работы прост: при согласовании выходного сопротивления широкополосного трансформатора Т1 с комплексным сопротивлением, имеющимся на входе симметричной линии, к меньшему сопротивлению подключается последовательный реактивный элемент (емкость), а к большему - параллельный (индуктивность). Т1 - симметрирующий широкополосный трансформатор (ШПТ) с коэффициентом трансформации сопротивлений 1:4. В качестве сердечника трансформатора можно применить кольцевой ферритовый сердечник К20ВЧ - К400НН. Типоразмер сердечника определяет габаритную мощность трансформатора и максимальную ВЧ мощность, которую можно подать на вход тюнера. С достаточной для практических целей точностью можно принять, что 1 см2 поперечного сечения кольцевого ферритового сердечника способен трансформировать 300 Вт подводимой к нему мощности.

При этом необходимо учесть следующее. Ферритовые кольца К100НН - К400НН с повышением рабочей частоты теряют способность передавать магнитный поток. Это приводит к тому, что габаритная мощность широкополосного трансформатора на таких кольцах с повышением частоты уменьшается. Наоборот, передача магнитного потока у колец К20ВЧ - К50ВЧ на любительских НЧ диапазонах минимальна, а с повышением частоты увеличивается, а значит, увеличивается габаритная мощность такого трансформатора. В любом случае, применяя кольца той или иной магнитной проницаемости, ШПТ следует изготовить с запасом габаритной мощности - лишним это не будет.

При изготовлении ШПТ 1:4 для обмоток удобно использовать двухжильный монтажный медный провод с сечением жил не менее 1,5 мм2, применяемый для прокладки скрытой электропроводки в квартирах. Диэлектрические свойства виниловой изоляции этого провода вполне достаточны для надежной работы трансформатора при подводимых к нему мощностях до 1 кВт. Если приобретение ферритовых колец затруднено, то не стоит отчаиваться.

Симметрирующий трансформатор 1:4 можно изготовить из коаксиального кабеля ниже.

Кабель свивают в плоскую катушку с последующим креплением витков ПХВ-изолентой.

Согласующим элементам схемы абсолютно безразлично, до какого значения трансформировать/согласовывать подведенный к ним импеданс симметричной линии. Поэтому в качестве Т1 может работать трансформатор с коэффициентом трансформации сопротивлений 1:1.

Вариант схемы тюнера, в котором применяется такой трансформатор, приведен ниже.

Здесь становится ненужным переключатель выбора вида согласования, но переключатель удобно использовать для режима «Обход». В таком режиме можно работать с симметричной линией, имеющей минимальную реактивность на входе. Однако изготовление трехобмоточного трансформатора менее технологично и более трудоемко, чем двухобмоточного с коэффициентом трансформации сопротивлений 1:4.

На максимальную подводимую к тюнеру мощность влияет не только габаритная мощность трансформатора Т1, но и зазор между пластинами конденсаторов переменной емкости С1.1 и С1.2. При мощности передатчика 300 - 350 Вт зазор между пластинами должен быть не менее 0,5 мм. Кроме того, роторы и статоры КПЕ должны размещаться на фарфоровых осях и изоляторах, т.е. быть изолированы как от корпуса, так и друг от друга, но иметь общую ось настройки. Не путайте эти два КПЕ с 2-секционными КПЕ, роторы которых связаны контактом не только между собой, но и с корпусом конденсатора!

Конструкция катушки с переменной индуктивностью - любая. Лучшей является катушка с перемещаемым роликовым или ползунковым контактом. Вполне приличные результаты можно получить, применив шаровый вариометр. Если используется катушка с переключаемыми отводами, то следует обратить внимание на электрическую прочность переключателя отводов. Для точного согласования изменение индуктивности у катушки отводами должно происходить с небольшим шагом.

Еще раз подчеркну, что данная схема тюнера очень критична к емкости и индуктивности реактивных элементов схемы согласования. Их величина зависит не только от частоты, но и от импеданса и реактивности на входе симметричной линии.

Широкополосный трансформатор Т1 - самая ответственная деталь в симметричном тюнере. От качества работы трансформатора зависит качество работы всей конструкции в целом. Качество самостоятельно изготовленного трансформатора можно легко определить экспериментально. Для этого включаем КСВ-метр между трансивером и трансформатором. В зависимости от выходного сопротивления трансивера (50 или 75 Ом) КСВ-метр должен быть сконструирован и отградуирован для работы с выбранным волновым сопротивлением тракта. Выход трансформатора нагружаем на два включенных последовательно безындукционных резистора сопротивлением 100 (150) Ом для ШПТ 1:4 и 25 (37,5) Ом для ШПТ 1:1. Резисторы следует подобрать с максимально близким сопротивлением.

Подаем с трансивера ВЧ сигнал и измеряем КСВ на всех KB диапазонах. В идеале КСВ на всех частотах должен быть близок к 1. Однако добиться этого крайне сложно из-за завала АЧХ, определяемой свойствами примененного ферритового сердечника и качеством намотки трансформатора. Например, в авторском варианте широкополосного трансформатора при использовании ферритового кольца К300НН завал АЧХ происходит на частотах от 21 МГц и выше (в диапазоне 10 м КСВ увеличивается до 1,5).

ВЧ вольтметром относительно «земли» (общего провода) следует измерить ВЧ напряжение на выходах трансформатора. На обоих выходах оно должно быть одинаковым (разница напряжений - не более ±5%). При измерении напряжения относительно средней точки соединения резисторов ВЧ вольтметр не должен фиксировать ВЧ напряжение. В противном случае имеет место асимметрия выходного напряжения, обусловленная некачественным изготовлением трансформатора, т.е. разной длиной проводов обмоток.

Равенство напряжений на выходах трансформатора и отсутствие «перекоса» напряжений на резисторах нагрузки свидетельствует о хорошей симметрии обмоток трансформатора. Измерения следует произвести во всех любительских KB диапазонах, а затем, для сравнения рабочих характеристик трансформатора, свести их в таблицу.

Для проведения измерений не обязательно применять промышленный ВЧ вольтметр. В точках измерения мы имеем дело с низким сопротивлением, поэтому исследование рабочих характеристик трансформатора можно провести самодельным низкоомным ВЧ вольтметром.

Правда, из-за зависимости свойств диода от частоты не удастся*измерить реальную величину завала АЧХ и КПД трансформатора, но этот прибор позволит измерить напряжения на выходах трансформатора и обнаружить «перекос» напряжений на нагрузочных резисторах.

Как и при работе с КСВ-метром, точность самодельного ВЧ вольтметра повышается при подведении к трансформатору достаточно большой ВЧ мощности от передатчика.

Радиолюбители, которые не имеют возможности изготовить самодельный ШПТ, могут в качестве Т1 применить фирменные симметрирующие трансформаторы с коэффициентом трансформации 1:4 или 1:1 (например, LDG RBA 1:1 (1:4) или MFJ-918).

Крохмаль Альфред Викторович

Трансформатором называют приспособление, задача которого заключается в изменении напряжения переменного тока на переменный ток другого напряжения. Такие преобразователи являются неотъемлемыми элементами различных электрических систем таких как:

  1. сварочные аппараты;
  2. нагревательные аппараты;
  3. выпрямительные устройства.

В данной статье речь пойдет о такой разновидности преобразующих устройств, как – согласующий трансформатор.

Сущность и принцип действия

Согласующий трансформатор (далее СТ) использует согласование импедансов различных частей электрической цепи во время трансформации и передачи электросигналов. Трансформаторные устройства согласовывают источник поступаемого сигнала с входным импедансом каскада в усилителях с низкими частотами (УНЧ).

Усилители низкой частоты – приспособления, увеличивающие частоты электрических волн до диапазона частот слышимых человеком (20 Гц – 20 кГц). Такие усилители используют как отдельное устройство либо применяют, как часть более сложного.

Примеры приборов с наличием усилителя:

  1. микрофон;
  2. телевизор;
  3. радиоприемник и т.п.

Сущность СТ заключается в следующем – устройство содержит подложку, выполненную из диэлектрического материала и ферритную пластину, имеющую в рабочих частотах дисперсную магнитную проницаемость. Со стороны подложки, обращенной к пластине, располагаются 1-й, 2-й, 3-й проводники, имеющие П-образную форму. С обратной стороны подложки наносится металлизация, имеющая два зазора в виде «П».

СТ состоит из:

1. Подложки диэлектрической; 2-4. Проводников; 5. Полоскового проводника; 6. Металлизации; 7. Контура щелевого; 8. Пластины ферритной; 9. Металлизации; 10–11. Зазоров; 12-13. Вспомогательных щелевых участков.

Рис. 1 Чертеж согласованного трансформатора

Принцип работы заключается:

  1. Первичная обмотка 4 получает входной сигнал. Пластина 8 и металлизация 6 играют роль связующего звена между проводниками 2-4.
  2. Затем вводятся новые элементы:
    1. с одной стороны проводник 4 диэлектрической подложки;
    2. с обратной – металлизация.

Коммутация проводников 2-4 обеспечивает уменьшение частоты в 2 раза. Данный вариант конфигурации СТ становится проще, отсутствует контакт между слоями. Согласующее устройство может быть исполнено как фрагмент печатной платы более усложненной схемы.

Конструкция

Устройства данного типа в своих конфигурациях используют ряд базовых элементов такие как:

  • магнитный проводник;
  • корпус для витков;
  • сами обмотки;
  • прочие вспомогательные элементы (крепежные фрагменты, средства защиты трансформатора).

СТ изготавливаются из магнитных проводников высокого качества. Существуют разновидности малых и больших размеров.

  1. Конструктивные особенности СТ малых габаритов:
    1. пластины сердечника не нуждаются в дополнительной изоляции;
    2. каждая пластина имеет оксидную пленку, которая и образует изоляцию.
  2. СТ больших размеров:
    1. пластины сердечника изолируются, путем покрытия с одной стороны изолирующего лака;
    2. устройства такой конфигурации используются при напряжениях на виток порядка менее десятых Вольта либо выше.

Рис 2. Согласующий трансформатор

Обмотки вокруг магнитопровода, как правило, наматывают из медной изолированной проволоки круглого сечения. Проводник прямоугольного сечения применяется в случае использования большого сечения, около 5-10 мм2.

Корпус такого трансформатора зачастую выполняется цилиндрическим. Такая конструкция более проста в изготовлении и имеет меньшую величину индуктивности рассеяния.

Сердечник отбирается по 2-м критериям:

  • конструкционная постоянная характеристика нижних частот, которая определяет частотный показатель устройства на низких частотах;
  • конструкционная постоянная магнитной индукции, которая определяет амплитуду составляющей магнитной индукции на самой низкой частоте.

Величину сердечника выбирают, учитывая конструкционную постоянную нижних величин частот, а также постоянную величину магнитной индукции в сердечнике.

Материал сердечника выбирают исходя из типа трансформатора, учитывая его рабочую среду, степень износа, а также конструкционные особенности и экономические затраты.

Типы согласующих сигнальных трансформаторов

В зависимости от области применения, внешних факторов и требований к аппаратуре существует большое множество разновидностей электрических преобразователей. Рассмотрим примеры моделей ТОТ, ТОЛ и ТВТ.

Трансформаторные устройства типа ТОТ

Расшифровка аббревиатуры:

Т- «трансформатор»;

О – «оконечный»;

Т- «транзисторный».

Предназначаются для работы в холодных климатических условиях при температуре (-60… +90 °С), с высокой вероятностью износа и относительной влажностью ~93 – 96%.

Рис. 3 Вид трансформаторов ТОТ-типа

Рис. 3. демонстрирует технические особенности устройства, с обозначение основных конструктивных параметров.

Конструктивные размеры указаны в таблице 1. Производство данных разновидностей трансформаторных устройств использует современную технологию производства на печатных платах с заливкой, кроме того, использование лакирования позволяет противодействовать погодным и механическим воздействиям.

Таблица 1. Конструкционные размеры преобразователей вида ТОТ.

Трансформаторные устройства типа ТОЛ

Расшифровка аббревиатуры:

Т- «трансформатор»;

О – «оконечный»;

Л- «ламповый».

Устройства данного типа применимы для работы в относительно холодных, тропических климатических условиях, с высокой вероятностью износа при температуре (-50… +130 °С) и относительной влажностью ~96 – 100%.

Рис. 4 Вид трансформаторов ТОЛ-типа

На рис. 4. представлены изображения устройства с разных видов и обозначения основных конструктивных параметров.

Таблица 2. Допустимые значения преобразователей вида ТОЛ.

Производство приборов ТОЛ – обеспечивает работу не повреждая обмотки, а также исключает возникновения коррозии на стальных деталях. Кроме того, такие приборы обладают высокой стойкостью к высоким температурам, механическим воздействиям и длительным периодом службы.

Трансформаторные устройства типа ТВТ

Расшифровка аббревиатуры:

Т- «трансформатор»;

В – «входной»;

Т- «транзисторный».

Такие СТ изготавливаются малогабаритными, и используются в умеренно-холодных климатических условиях. Рабочая температура колеблется (-60… +85°С), влажность менее 95%. В таких перепадах температуры имеет место вероятность частичного износа трансформатора.

Рис. 5 Вид трансформаторов ТВТ-типа

Таблица 3. Конструкционные размеры преобразователей вида ТВТ

Конструкционная особенность каркаса обеспечивает дополнительную жесткость посредством монтажных выводов. Участок между отводами рекомендуется выдерживать около 2,5 – 3,0 мм. При изготовлении применяются магнитные проводники в виде стержней с высокой магнитной проницаемостью (марки сталей – 79НМА и 50Н), а также высоким показателем индукции технического насыщения.

В конце стоит отметить, что устройства с согласующим трансформатором, перед тем как будут запущены в эксплуатацию, должны пройти необходимые испытания и быть гарантированными для дальнейшей службы. Условием, необходимым для обеспечения соответствующей степени надежности, является реализация ограничений перенапряжения, поскольку при работе СТ может подвергаться более серьезным нагрузкам и иметь большую вероятность износа, нежели при тех, которые проводились на предварительных испытаниях.

Видео о согласующем трансформаторе

Последние мои публикации, посвященные КВ антеннам, вызвали у многих читателей ряд вопросов о конструкции используемых в них трансформаторов и дросселей.

Этот вопрос хорошо освещен в радиолюбительской литературе и многочисленных статьях и, казалось бы, не требует дальнейших комментариев.

Ферритовые трансформаторы на ферритовых трубках выполняют сразу несколько функций: трансформируют сопротивление, симметрируют токи в плечах антенны и подавляют синфазный ток в оплетке коаксиального фидера. Наилучшим отечественным ферритовым материалом для широкополосных трансформаторов является феррит марки 600НН, но из него не изготавливали трубчатых сердечников...

Сейчас в продаже появились ферритовые трубки зарубежных фирм с хорошими характеристиками,
в частности FRR-4,5 и FRR-9,5 , имеющие размеры dxDxL 4,5x14x27 и 9,5х17,5х35 соответственно. Последние трубки использовались в качестве помехо-подавляющих дросселей на кабелях, соединяющих системные блоки компьютеров с мониторами на электронно-лучевых трубках. Сейчас их массово заменяют на матричные мониторы, а старые выбрасывают вместе с ферритами.

Рис.1. Ферритовые трубки FRR-9,5


Четыре таких трубки, сложенные рядом по две, образуют эквивалент «бинокля», на котором можно разместить обмотки трансформаторов, перекрывающих все КВ диапазоны от 160 до 10 м. Трубки имеют скругленные грани, что исключает повреждения изоляции проводов обмоток. Трубки удобно скрепить вместе, обмотав широким скотчем.

Из различных схем широкополосных трансформаторов я использовал простейшую, с раздельными обмотками, витки которых имеют дополнительную связь за счет плотной скрутки проводников между собой, что позволяет уменьшить индуктивность рассеяния и за счет этого повысить верхнюю границу рабочей полосы частот. Одним витком будем считать провод, продетый через отверстия обеих трубок «бинокля». Половиной витка - провод, продетый через отверстие одной трубки «бинокля». В таблицу
сведены варианты трансформаторов, выполнимых на этих трубках.

В таблицу сведены варианты трансформаторов, выполнимых на этих трубках.



Как видим, получается весьма широкий выбор соотношения сопротивлений. Трансформатор с коэффициентом 1:1 - подобно дросселю симметрирует токи в плечах антенны и подавляет синфазный ток в оплетке кабеля питания. Прочие трансформаторы в дополнение к этому еще и трансформируют сопротивления. Чем руководствоваться при выборе числа витков? При прочих равных условиях трансформаторы с одновитковой первичной обмоткой имеют примерно в четыре раза более высокую нижнюю границу полосы пропускания по сравнению с двухвитковой, но и верхняя частота полосы пропускания и них значительно выше. Поэтому для трансформаторов, используемых от диапазонов 160 м и 80 м лучше использовать двухвитковые варианты, а от 40 м и выше - одновитковые. Использовать целочисленные значения числа витков предпочтительно, если желательно сохранить симметрию и разнести выводы обмоток на противоположные стороны «бинокля».

Чем выше коэффициент трансформации, тем труднее получить широкую полосу пропускания, поскольку возрастает индуктивность рассеяния обмоток. Компенсировать ее можно путем включения конденсатора параллельно первичной обмотке, подбирая его емкость по минимуму КСВ на верхней рабочей частоте.

Для обмоток я обычно использую провод МГТФ-0,5 или более тонкий, если нужное число витков не умещается в отверстии. Заранее рассчитываю нужную длину провода и отрезаю ее некоторым запасом. Провод первичной и вторичной обмоток плотно скручиваю до намотки на сердечник. Если отверстие феррита не заполнено обмотками, лучше продевать витки в подходящие по диаметру термоусаживаемые трубки, отрезанные по длине «бинокля», которые после завершения намотки усаживаются с помощью фена. Плотное прижатие витков обмоток друг к другу расширяет полосу трансформатора и часто позволяет исключить компенсирующий конденсатор.

Следует иметь в виду, что повышающий трансформатор может работать и как понижающий, с тем же коэффициентом трансформации, если его перевернуть. Обмотки, предназначенные для подключения к низкоомным сопротивлениям, нужно выполнять из экранной «плетёнки» или нескольких проводов, соединенных параллельно.

Проверку трансформатора можно проводить с помощью измерителя КСВ, нагрузив его выход на безиндуктивный резистор соответствующего номинала. Границы полосы определяются по допустимому уровню КСВ, например 1,1. Измерить потери, вносимые трансформатором, можно путем измерения ослабления, вносимого двумя одинаковыми трансформаторами, включенными последовательно, так, чтобы вход и выход имели сопротивление 50 Ом. Результат не забудьте поделить на 2.

Несколько труднее оценить мощностные характеристики трансформатора. Для этого потребуется усилитель и эквивалент нагрузки, способный выдерживать необходимую мощность. Используется та же схема с двумя трансформаторами. Измерение проводится на нижней рабочей частоте. Постепенно поднимая мощность CW и поддерживая ее примерно с минуту, определяем рукой температуру феррита. Уровень, при котором феррит за минуту начинает чуть заметно нагреваться, можно считать максимально допустимым для данного трансформатора. Дело в том, что при работе не на эквивалент нагрузки, а на реальную антенну, имеющую реактивную составляющую входного импеданса, трансформатор передает еще и реактивную мощность, которая может насыщать магнитный сердечник и вызывать дополнительный нагрев.

На рисунках показаны примеры практических конструкций. На рис.5 - трансформатор, имеющий два выхода: на 200 и 300 Ом.

Рис.2. Трансформатор 50:110


Рис.3. Трансформатор 50:200


Рис.4. Трансформатор 50:300


Рис.5. Трансформатор 50:200/300


Трансформаторы можно разместить на подходящего размера печатной плате,
защитив ее от осадков любым практическим способом.

Владислав Щербаков, RU3ARJ

info - http://cqmrk.ru