Сила тока и напряжение на катушке индуктивности. Катушка индуктивности в цепи переменного тока – принцип действия и значение

Как ведет себя катушка индуктивности в цепи постоянного и переменного тока?

Катушка индуктивности в цепи постоянного тока

Итак, для этого опыта нам понадобится блок питания , который выдает постоянное напряжение, лампочка накаливания и собственно сама катушка индуктивности.

Чтобы сделать катушку индуктивности с хорошей индуктивностью, нам надо взять ферритовый сердечник:

Намотать на него лакированного медного провода и зачистить выводы:

Замеряем индуктивность нашей катушки с помощью LC метра :


132 микрогенри.

Теперь собираем все это вот по такой схеме:

где

L — катушка индуктивности

La — лампочка накаливания на напряжение 12 Вольт

Bat — блок питания, с выставленным напряжением 12 Вольт

Лампочка засветилась!


Как вы помните из , конденсатор у нас не пропускал постоянный электрический ток:


Делаем вывод: постоянный электрический ток почти беспрепятственно течет через катушку индуктивности. Сопротивлением обладает только сам провод, из которого намотана катушка.

Катушка индуктивности в цепи переменного тока

Для того, чтобы узнать, как ведет себя катушка индуктивности в цепи переменного тока, нам понадобится , генератор частоты , собственно сама катушка индуктивности и резистор на 100 Ом. Чем больше сопротивление, тем меньше будет проседать напряжение с моего генератора частоты, поэтому я взял резистор на 100 Ом.Он у меня будет в качестве шунта. Падение напряжения на этом резисторе будет зависеть от тока, протекающего через него

Собираем все это дело по такой схеме:


Получилось как то так:


Сразу договоримся, что у нас первый канал будет красным цветом, а второй канал — желтым. Следовательно, красная синусоида — это частота, которую нам выдает генератор частоты, а желтая синусоида — это сигнал, который снимается с резистора.

Мы с вами узнали, что при нулевой частоте (постоянный ток), катушка почти беспрепятственно пропускает через себя электрический ток. В нашем опыте мы будем подавать с генератора частоты синусоидальный сигнал с разной частотой и смотреть, меняется ли напряжение на резисторе.

Опыт N1

Для начала подаем сигнал с частотой в 1 Килогерц.


Давайте разберемся, что есть что. В зеленой рамочке я вывел автоматические замеры, которые делает осциллограф


Красный кружок с цифрой «1» — это замеры «красного»канала. Как мы видим, F (частота) =1 Килогерц, а Ма (амплитуда) = 1,96 Вольт. Ну грубо скажем 2 Вольта. Смотрим на кружочек с цифрой «2». F =1 Килогерц, а Ма =1,96 Вольт. То есть можно сказать, что сигнал на выходе точно такой же, как и на входе.

Увеличиваем частоту до 10 Килогерц


Амплитуда не уменьшилась. Сигнал какой есть, такой и остался.

Увеличиваем до 100 Килогерц


Заметили разницу? Амплитуда желтого сигнала стала меньше, да еще и график желтого сигнала сдвигается вправо, то есть запаздывает, или научным языком, появляется . Красный сигнал никуда не сдвигается, запаздывает именно желтый. Это имейте ввиду.

Сдвиг фаз — это разность между начальными фазами двух измеряемых величин . В данном случае напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота . Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз :

Увеличиваем частоту до 200 Килогерц


На частоте 200 Килогерц амплитуда упала вдвое, да и разность фаз стала больше.

Увеличиваем частоту до 300 Килогерц.


Амплитуда желтого сигнала упала уже до 720 милливольт. Разность фаз стала еще больше.

Увеличиваем частоту до 500 Килогерц


Амплитуда уменьшилась до 480 милливольт.

Добавляем еще частоту до 1 Мегагерц


Амплитуда желтого канала стала 280 милливольт.

Ну и добавляем частоту до предела, который позволяет выдать генератор частоты: 2 Мегагерца


Амплитуда «желтого» сигнала стала настолько маленькой, что мне пришлось ее даже увеличить в 5 раз.

И можно сказать, что сдвиг фаз стал почти 90 градусов или π/2.

Но станет ли сдвиг фаз больше, чем 90 градусов, если подать очень-очень большую частоту? Эксперименты говорят, что нет. Если сказать просто, то при бесконечной частоте сдвиг фаз будет равняться 90 градусов. Если совместить наши графики на бесконечной частоте, то можно увидеть примерно вот такой рисунок:


Так какой вывод можно сделать?

С увеличением частоты сопротивление катушки растет, а также увеличивается сдвиг фаз. И чем больше частота, тем больше будет сдвиг фазы, но не более, чем 90 градусов.

Опыт N2

Давайте же уменьшим индуктивность катушки. Прогоним еще раз по тем же самым частотам. Я убрал половину витков и сделал витки на край феррита, тем самым уменьшил индуктивность до 33 микрогенри.


Итак, прогоняем все по тем же значениям частоты


При частоте в 1 Килогерц у нас значение почти не изменилось.

10 Килогерц


Здесь тоже ничего не изменилось.

100 Килогерц


Тоже почти ничего не изменилось, кроме того, что желтый сигнал стал тихонько сдвигаться.

200 Килогерц


Здесь уже видим, что амплитуда на желтом сигнале начинает проседать и сдвиг фаз наращивает обороты.

300 Килогерц


Сдвиг фаз стал больше и амплитуда просела еще больше

500 Килогерц


Сдвиг стал еще больше и амплитуда желтого сигнала тоже просела.

1 Мегагерц


Амплитуда желтого сигнала падает, сдвиг фаз прибавляется. ;-)

2 Мегагерца, предел моего генератор частоты


Сдвиг фаз стал почти равен 90 градусов, а амплитуда стала даже меньше, чем пол Вольта.

Обратите внимание на амплитуду в Вольтах на тех же самых частотах. В первом случае у нас индуктивность была больше, чем во втором случае, но амплитуда желтого сигнала во втором случае больше, чем в первом.

Отсюда вывод напрашивается сам собой:

При уменьшении индуктивности, сопротивление катушки индуктивности также уменьшается.

Реактивное сопротивление катушки индуктивности

С помощью нехитрых умозаключений, физиками была выведена формула:

где

Х L — катушки, Ом

П — постоянная и равна приблизительно 3,14

F — частота, Гц

L — индуктивность, Гн

В данном опыте мы с вами получили (ФНЧ). Как вы видели сами, на низких частотах катушка индуктивности почти не оказывает сопротивление напряжению, следовательно амплитуда и мощность на выходе такого фильтра будет почти такой же, как и на входе. Но с увеличением частоты у нас амплитуда гасится. Применив такой фильтр на динамик, можно с уверенностью сказать, что будет усиливаться только бас, то есть низкая частота звука.

Заключение

Постоянный ток протекает через катушку индуктивности без каких-либо проблем. Сопротивлением обладает только сам провод, из которого намотана катушка.

Сопротивление катушки зависит от частоты протекающего через нее тока и выражается формулой:



Добавить свою цену в базу

Комментарий

Индуктивностью называется идеализированный элемент электрической цепи, в котором происходит запасание энергии магнитного поля. Запасания энергии электрического поля или преобразования электрической энергии в другие виды энергии в ней не происходит.

Наиболее близким к идеализированному элементу – индуктивности – является реальный элемент электрической цепи – индуктивная катушка.

В отличие от индуктивности в индуктивной катушке имеют место также запасание энергии электрического поля и преобразование электрической энергии в другие виды энергии, в частности в тепловую.

Количественно способность реального и идеализированного элементов электрической цепи запасать энергию магнитного поля характеризуется параметром, называемым индуктивностью.

Таким образом термин «индуктивность» применяется как название идеализированного элемента электрической цепи, как название параметра, количественно характеризующего свойства этого элемента, и как название основного параметра индуктивной катушки.

Связь между напряжением и током в индуктивной катушке определяется законом электромагнитной индукции, из которого следует, что при изменении магнитного потока, пронизывающего индуктивную катушку, в ней наводится электродвижущая сила е, пропорциональная скорости изменения потокосцепления катушки ψ и направленная таким образом, чтобы вызываемый ею ток стремился воспрепятствовать изменению магнитного потока:

Чем выше индуктивность проводника, тем больше будет магнитное поле при одном и том же значении электрического тока. Физически индуктивность в электрической цепи – это катушка, состоящая из пассивного (диэлектрик) или активного (ферромагнитный материал, железо) сердечника и намотанного на него электрического провода.

Если протекающий ток изменяет свою величину во времени, то есть является не постоянным, а переменным, то в индуктивном контуре меняется магнитное поле, вследствие чего возникает ЭДС (электродвижущая сила) самоиндукции. Эта ЭДС также как и электрическое напряжение измеряется в вольтах (В).

Единицей измерения индуктивности является Гн (генри). Она названа в честь Джозефа Генри – американского ученого, открывшего явление самоиндукции. Считается, что контур (катушка индуктивности) имеет величину 1 Гн, если при изменении тока в 1 А (ампер) за одну секунду в нем возникает ЭДС величиною в 1 В (вольт). Обозначается индуктивность буквой L, в честь Эмиля Христиановича Ленца– знаменитого российского физика. Термин «индуктивность» был предложен Оливером Хевисайдом – английским ученым-самоучкой в 1886 году.

Свойства индуктивности

  • Индуктивность всегда положительна.
  • Индуктивность зависит только от геометрических размеров контура и магнитных свойств среды (сердечника).

Катушка индуктивности

Катушка индуктивности – электронный компонент, представляющий собой винтовую либо спиральную конструкцию, выполненную с применением изолированного проводника. Основным свойством катушки индуктивности, как понятно из названия – индуктивность. Индуктивность – это свойство преобразовать энергию электрического тока в энергию магнитного поля. Величина индуктивности для цилиндрической или кольцевой катушки равна

Где ψ — потокосцепление, µ 0 = 4π*10 -7 – магнитная постоянная, N – количество витков, S – площадь поперечного сечения катушки.

Также катушке индуктивности присущи такие свойства как небольшая ёмкость и малое активное сопротивление, а идеальная катушка и вовсе их лишена. Применение данного электронного компонента отмечается практически повсеместно в электротехнических устройствах.

Цели применения различны:

  • подавление помех в электрической цепи;
  • сглаживание уровня пульсаций;
  • накопление энергетического потенциала;
  • ограничение токов переменной частоты;
  • построение резонансных колебательных контуров;
  • фильтрация частот в цепях прохождения электрического сигнала;
  • формирование области магнитного поля;
  • построение линий задержек, датчиков и т.д.

Применение в технике

Катушки индуктивности применяются:


По большому счёту, во всех генераторах электрического тока любого типа, равно как и в электродвигателях, их обмотки представляют собой катушки индуктивности. Следуя традиции древних изображения плоской Земли, стоящей на трёх слонах или китах, сегодня мы могли бы с большим основанием утверждать, что жизнь на Земле покоится на катушке индуктивности.

– это качество работы катушки в цепях переменного тока. Добротность катушки индуктивности определяют как отношение её индуктивного сопротивления к активному сопротивлению. Грубо говоря, индуктивное сопротивление – это сопротивление катушки переменному току, а активное сопротивление – это сопротивление катушки постоянному току и сопротивление, обусловленное потерями электрической мощности в каркасе, сердечнике, экране и изоляции катушки. Чем меньше активное сопротивление, тем выше добротность катушки и её качество. Таким образом, можно сказать, что чем выше добротность, тем меньше потери энергии в катушке индуктивности.

Индуктивное сопротивление определяется формулой:

X L = ωL = 2πfL

Где ω = 2πf – круговая частота (f – частота, Гц); L – индуктивность катушки, Гн.

Добротность катушки индуктивности определяется формулой:

Q = X L / R = ωL / R = 2πfL / R

Где R – активное сопротивление катушки индуктивности, Ом.

Энергия магнитного поля тока

Вокруг проводника с током существует магнитное поле, которое обладает энергией. Откуда она берется? Источник тока, включенный в эл. цепь, обладает запасом энергии. В момент замыкания эл. цепи источник тока расходует часть своей энергии на преодоление действия возникающей ЭДС самоиндукции. Эта часть энергии, называемая собственной энергией тока, и идет на образование магнитного поля. Энергия магнитного поля равна собственной энергии тока.
Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.

Энергия магнитного поля, созданного током, прямо пропорциональна квадрату силы тока. Куда пропадает энергия магнитного поля после прекращения тока? – выделяется (при размыкании цепи с достаточно большой силой тока возможно возникновение искры или дуги).

Катушки индуктивности позволяют запасать электрическую энергию в магнитном поле. Типичными областями их применения являются сглаживающие фильтры и различные селективные цепи.

Электрические характеристики катушек индуктивности определяются их конструкцией, свойствами материала магнитопровода и его конфигурацией, числом витков обмотки.

Ниже приведены основные факторы, которые следует учитывать при выборе катушки индуктивности:

а) требуемое значение индуктивности (Гн, мГн, мкГн, нГн),

б) максимальный ток катушки. Большой ток очень опасен из-за слишком сильного нагрева, при котором повреждается изоляция обмоток. Кроме того, при слишком большом токе может произойти насыщение магнитопровода магнитным потоком, что приведет к значительному уменьшению индуктивности,

в) точность выполнения индуктивности,

г) температурный коэффициент индуктивности,

д) стабильность, определяемая зависимостью индуктивности от внешних факторов,

е) активное сопротивление провода обмотки,

ж) добротность катушки. Она обычно определяется на рабочей частоте как отношение индуктивною и активного сопротивлений,

з) частотный диапазон катушки.

В настоящее время выпускаются радиочастотные катушки индуктивности на фиксированые значения частоты с индуктивностями от 1 мкГн до 10 мГн. Для подстройки резонансных контуров желательно иметь катушки с регулируемой индуктивностью.

Однослойные с незамкнутым магнитопроводом катушки индуктивности применяются в цепях настройки приборов.

Многослойные с не замкнутым магнитопроводом катушки используются в фильтрах и высокочастотных трансформаторах. Многослойные катушки индуктивности броневого типа с сердечником из феррита применяются в фильтрах низких и средних частот и трансформаторах, а аналогичные катушки, но со стальным сердечником используются в сглаживающих дросселях и низкочастотных фильтрах.

Формулы для расчета катушки индуктивности

Основные аппроксимирующие соотношения, используемые при проектировании катушек индуктивности, имеют следующий вид.

1. Параметры однослойных катушек индуктивности у которых отношение длины к диаметру больше 5, определяются в виде

где L - индуктивность, мкГн, М- число витков, d - диаметр катушки, см, l - длина намотки, см.

2. Параметры многослойных катушек индуктивности, у которых отношение диаметра к длине больше 1, определяются в виде

где L - индуктивность, мкГн, N - число витков, d м - средний диаметр обмотки, см, d - толщина обмотки, см.

Одно- и многослойные катушки с незамкнутым ферритовым магнитопроводом будут иметь индуктивность в 1,5 - 3 раза больше в зависимости от свойств и конфигурации сердечника. Латунный сердечник, вставленный вместо ферритового. уменьшит индуктивность до 60-90% по сравнению с ее значением без сердечника.

Для сокращения числа витков при сохранении той же индуктивности можно использовать ферритовый сердечник.

При изготовлении катушек индуктивностью от 100 мкГн до 100 мГн для областей низких и средних частот целесообразно применить чашечные ферритовые броневые сердечники серии КМ. Магнитопровод в этом случае состоит из двух подогнанных друг к другу чашек, к которым прилагаются односекционная катушка, две крепежные клипсы и подстроечный стержень.

Необходимая индуктивность и число витков могут быть вычислены по формулам

где N - число витков, L - индуктивность, нГн, Аl - коэффициент индуктивности, нГн/ вит.

Всегда нужно помнить о том, что прежде, чем рассчитывать индуктивность, следует определить число витков, которые могут поместиться на данной катушке.

Чем меньше диаметр провода, тем больше число витков, но тем больше сопротивление провода и, естественно, его нагрев из-за выделяющейся мощности, равной I 2 R . Действующее значение тока катушки не должно превышать 100 мА для провода диаметром 0,2 мм. 750 мА - для 0,5 мм и 4 А - для 1 мм.

Небольшие замечания и советы

Индуктивность катушек со стальным сердечником очень быстро уменьшается с ростом постоянной составляющей тока обмотки. Это нужно иметь в виду особенно при проектировании сглаживающих фильтров источников электропитания.

Максимальный ток катушки индуктивности зависит от температуры окружающей среда, причем он дал жен уменьшаться с ее увеличением. Поэтому для обеспечения надежной работы устройства следует обеспечить большой запас по току.

Ферритовые тороидальные сердечники эффективны для изготовления фильтров и трансформаторов на частотах выше 30 МГц. При этом обмотки состоят всего лишь из нескольких витков.

При использовании любых типов сердечников часть магнитных силовых линий замыкается не по магнитопроводу, а через окружающее его пространство. Особенно сильно этот эффект проявляется в случае незамкнутых магнитопроводов. Заметим, что эти магнитные поля рассеяния являются источниками помех, поэтому в аппаратуре сердечники нужно размещать так, чтобы по возможности уменьшить эти помехи.

Весьма важное практическое значение имеет один частный случай получивший название самоиндукции. Так, когда индукционная катушка образует ток, то одновременно с ним возникает и магнитный поток, который растет с увеличением тока. С изменением магнитного потока катушка индуктирует величина которой пропорциональна изменению скорости магнитного потока.

Так как в данном случае проводник индуцирует электродвижущую силу в самом себе, то это явление называется самоиндукцией. в электрических цепях иногда сравнивают с проявлением инертности в механике.

Электродвижущая сила, индуктированная в индукционной катушке под влиянием изменения её собственного магнитного потока, называется электродвижущей силой самоиндукции.

Согласно закону Ленца, во всё время роста магнитного потока, принизывающего витки катушки, ЭДС самоиндукции в катушке направлена против включённого в данную цепь, и противодействует росту тока в цепи катушки.

Когда ток в катушке достигает постоянной величины, прекращает изменение, и ЭДС самоиндукции в катушке становится равной нулю.
При самоиндукции, как и при всяком процессе электромагнитной индукции, индуктированная электродвижущая сила пропорциональна скорости, с которой магнитный поток, сцепленный с контуром, по которому течёт ток, изменяется. Величина же магнитного потока при отсутствии в катушке железа пропорциональна скорости, с которой изменяется ток (∆I/∆t), создающий этот поток.

Таким образом, величина электродвижущей силы самоиндукции, возникающей в проводнике, пропорциональна скорости, с которой изменяется ток в нем.
Если брать проводники разной формы, то окажется, что имея одинаковую скорость изменения тока, электродвижущие силы самоиндукции, возникающие в них, будут различны.

Так, если взять катушку, а затем растянуть в один виток, то при одинаковой скорости, с которой происходит изменение тока, ЭДС самоиндукции катушки будет больше. Это связанно с тем, что каждая силовая линия, принизывая витки катушки, сцепляется с ней большее число раз, чем с одним витком.

Величина, характеризующая связь между скоростью, с которой ток изменяется в цепи, и возникающей при этом ЭДС самоиндукции - индуктивность цепи.

Обозначим индуктивность катушки буквой L; тогда зависимость величины электродвижущей силы самоиндукции от скорости, с которой происходит изменение тока, можно выразить следующей формулой:

E = - L (∆I/∆t)

ед. L = (ед.E ˖ ед. t)/(ед.I)

Полагая, что в этой формуле ∆t = 1 сек, ∆I = 1 амперу и Е = 1 вольту, получим:

ед. L = 1(в ˖ сек/а)

Такую единицу называют генри (Гн).

Следовательно,

1 Гн = 1 (в ˖ сек/а)

Итак, генри - это индуктивность катушки, в которой изменение тока на 1 ампер в секунду возбуждает электродвижущую силу самоиндукции, равную 1 вольту.
Для измерения малых индуктивностей применяются тысячные доли генри - миллигенри (мГн) и миллионные доли генри - микрогенри (мкГн).

Кроме того, часто применяется и другая единица - сантиметр индуктивности, причём 1 мкГн = 1000 см индуктивности.

Таким образом,

1 Гн = 1000 мГн = 1000000 мкГн = 1000000000 см

Индуктивность катушки находится в зависимости от её числа витков, формы и размеров. Чем больше число витков в катушке самоиндукции, тем больше ее индуктивность.

Также, самоиндукция, индуктивность катушки значительно увеличивается при внесении внутрь её сердечника из железа или какого-либо другого магнитного материала.
Большой индуктивностью обладают обмотки электромагнитов у генераторов и двигателей, в момент размыкания цепи, когда скорость изменения электрического тока (∆I/∆t) очень велика, в этих обмотках может возникнуть большая ЭДС самоиндукции, которая, если не принять соответствующих мер, приведёт к пробою изоляции обмоток.

Индуктивность в цепи переменного тока будет влиять на силу переменного тока. Проверим это на следующем опыте.

Возьмем два источника питания. Один из них пусть будет источником постоянного напряжения, а второй – переменного. Причем подберем источники так, чтобы постоянное значение напряжения равнялось действующему значению переменного напряжения. Подключим к ним с помощью переключателя цепь, состоящую из лампочки и катушки индуктивности.

Причем лампочка и катушка подключены последовательно. Переключатель включим так, чтобы при одном положении цепь питалась от источника постоянного тока, а при другом – от источника переменного тока.

При включении питания от источника постоянного тока лампочка загорится очень ярко. Если подключить цепь к источнику тока с переменным напряжением, то лампочка будет гореть, но заметно слабее. Можем сделать вывод, что действующее значение силы тока при переменном токе меньше, чем сила тока при постоянном источнике.

Индуктивность катушки

Это можно объяснить с помощью явления самоиндукции. ЭДС самоиндукции катушки будет достаточно большим, и будет препятствовать нарастанию силы тока, поэтому свое максимальное значение сила тока достигнет только спустя некоторое время. Если напряжение будет быстро меняться, то сила тока не будет успевать достигнуть своего максимального значения.

Можно сделать вывод, что индуктивность катушки будет ограничивать максимальное значение силы тока. Чем больше индуктивность катушки и частота изменения напряжения, тем меньше будет максимальное значение силы тока.

Рассмотрим цепь, в которой есть только катушка индуктивности. При этом значение сопротивления катушки и соединительных проводов пренебрежимо мало.

Выясним, как будут связаны напряжение на катушке с ЭДС самоиндукции в ней. При сопротивлении катушки равном нулю, напряженность электрического поля внутри проводника тоже будет равна нулю. Равенство нулю напряженности возможно.

Напряженности электрического поля создаваемого зарядами Eк будет соответствовать такая же по модулю и противоположно направленная напряженность вихревого электрического поля, которое появится вследствие изменения магнитного поля.

Следовательно, ЭДС самоиндукции ei будет равна по модулю и противоположна по знаку удельной работе кулоновского поля.

Следовательно:

Сила тока будет изменяться по гармоническому закону:

I = Im*sin(ω*t).

ЭДС самоиндукции будет равна:

Ei = -L*i’ = -L*ω*im*cos(ω*t).

Следовательно, напряжение будет равно:

U = L*ω*Im*cos(ω*t) = L*ω*Im*sin(ω*t+pi/2).

Отсюда значение действующего напряжения будет равняться Um = L*ω*Im. Видим, что между колебаниями тока и напряжения получилась разность фаз равная pi/2.

Индуктивное сопротивление

Следовательно, колебания силы тока отстают от колебания напряжения на pi/2. Это наглядно представлено на следующем рисунке.